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Abstract— This philosophical paper is motivated by two
seemingly unrelated observations: first, progress in com-
puter vision has long been hampered by the difficulty of
evaluating and comparing techniques. Second, there exists
a deep connection between computer vision and image
compression: in both cases the goal is to find parsimonious
scene descriptions. These observations lead us to propose a
new evaluation methodology for computer vision based on
large scale image compression. This methodology has signif-
icant practical advantages compared to previous evaluation
schemes. It permits rigorous quantitative comparisons, al-
lows researchers to take advantage of large image databases,
and provides a single framework within which to evaluate
many different techniques. Also, the impossibility of data
compression in general implies that in order to compress
natural image databases, the empirical regularities present
in such images must be discovered and exploited. These ideas
suggest that systematic progress can be made by following
the compression rate methodology, and this progress will
translate directly into advances in computer vision. We also
argue that the large scale compression perspective is much
closer to the natural setting of the learning problem, and
that it opens a new door for statistical learning by justifying
the construction of highly complex models.

1. Introduction
Since the inception of the field of computer vision, the

problem of evaluation has been a challenging one. As noted
by [1], many well-known papers present complex mathemat-
ical techniques, but only demonstrate the effectiveness of
those techniques by showing three or four images that result
from their application. Several researchers have argued that
for computer vision to achieve its grand ambitions, it must
develop a solid experimental tradition [2], [3]. However, it is
far from obvious what form such a tradition should take. The
methods currently used for empirical evaluation of computer
vision techniques run afoul of several practical difficulties,
discussed in Section 2.

The chronic difficulty of evaluation suggests that, instead
of attempting to repair the evaluation schemes, the field
ought to shift focus to related research questions, the answers
to which can be more efficiently graded. Following this idea,
we propose a research methodology based on the question:
given a large image database, how can that database be loss-
lessly compressed to the smallest possible size? In Section 3
we discuss the significant advantages of this methodology.

The main perceived drawback of the compression rate
methodology is that the connection to useful computer vision
research seems tenuous. The argument of Section 4 is that
most, if not all, standard problems in computer vision can
be formulated as compression problems. This argument is
not difficult to make, as ideas from information theory
have played an important role in computer vision for some
time [4], [5], [6].

A further set of ideas, presented in Section 5, involves the
connection between compression and learning. We show that
the vast quantity of data available in computer vision requires
a new perspective on the learning problem. In particular,
the vast data justifies the use of highly complex models, in
contrast to the case of limited data learning problems where
simple models are necessary to achieve generalization [7],
[8]. We also argue that the data compression formulation is
much closer to the natural setting of the learning problem.

2. Limitations of Evaluation Methods
In this section we give a brief overview of traditional

evaluation methods in computer vision. To begin we give a
categorization of the obstacles that most evaluation schemes
tend to encounter:

1) Limited data: It is difficult and time consuming to
obtain ground truth or labeled data, so only a small
amount is used.

2) Response subjectivity: For many tasks (e.g. segmenta-
tion) there is no precisely defined correct answer.

3) Data set subjectivity: The evaluation schemes use
image data sets that are artificial or arbitrarily chosen,
and do not represent the full range of natural images.

4) Ambiguity of problem definition: The problem itself
is not precisely defined, so each different technique
solves a slightly different variation of it.

We first consider the task of object recognition. This
domain supports a simple evaluation method: construct a
labeled database and count the number of mistakes each
method makes on the database. Here the obvious obstacle
is that labeled databases are time-consuming and expensive
to construct (problem #1). For example, the recently pop-
ular Caltech 101 database includes less than 10,000 total
images of 101 different types (around 50 each); the paper
introducing the database notes that previous work on object
recognition typically used less than six object categories [9].
This evaluation scheme also involves the problem of data
set subjectivity (#3), requiring the experimentalist to decide



which objects are important to recognize (the Caltech101
database includes objects such as “Euphonium”, “Ewer”, and
“Stegosaurus”). In the related domain of face recognition,
there are moderately large databases available [10], but now
problem #4 arises: some techniques do face detection, others
do face recognition, and still others attempt to analyze facial
gestures. The data set subjectivity problem (#3) also arises,
as the experimentalist must choose in what pose, lighting
and background conditions the image should be taken.

Segmentation is another standard problem in computer
vision that faces substantial empirical obstacles. The main
issue for segmentation is the response subjectivity problem
(#2): there is no such thing as a “correct” segmentation re-
sult. The creators of the well-known Berkeley Segmentation
Dataset have attempted to circumvent this issue by allowing
the human test subjects to choose whatever segmentation
result they perceive to be correct [11]. However, this only
moves the burden of making subjective choices from the
experimentalist to the test subject. This method also means
that collecting data will be time-consuming and expensive
(problem #1). Other schemes for evaluating segmentation
methods avoid the requirement of using human produced
results, but instead rely on seemingly arbitrary performance
measures (see the survey by Zhang [12]). Similar problems
arise in the related domain of range image segmentation. In
an oft-cited study [1], Hoover et al. compared a number of
algorithms using only 80 range images, since such ground
truth data is time-consuming to obtain (problem #1).

The story is much the same in the domain of stereo
matching. For example [13] presents an evaluation of a large
number of stereo matching algorithms using only four test
images. The data set subjectivity problem also arises; the
test images used in [13] are odd compositions with little
resemblance to natural images.

It is particularly hard to evaluate techniques that perform
the important task of edge detection. One empirical evalua-
tion scheme uses ROC curves obtained by comparing the
output of various detectors to manually obtained ground
truth [14]. This implies that the limited data problem (#1)
arises ([14] uses 20 test images) as well as the response
subjectivity problem (#2). Moreover, other work showed that
the ROC curve results are highly sensitive to small changes
in the underlying image [15].

A more abstract problem is that the current paradigm
of evaluation in computer vision is not scaleable. Each
task requires its own evaluation method. It would be far
more efficient to use a universal scheme that can grade
the performance of many different methods within the same
framework. Furthermore, the ultimate goal of vision is not
segmentation or edge detection. These techniques construct
low-level scene descriptions; it is assumed that such de-
scriptions will be useful to some unspecified higher-level
algorithms. Thus, for all the work that has been done in the
area of evaluation, an enormously larger amount of work

remains to evaluate the higher-level algorithms. If a universal
evaluation scheme were available, it could be used for both
the low-level and high-level tasks. Can such a scheme exist?
We argue the answer is yes.

3. Compression Rate Methodology
To overcome the problems of empirical evaluation dis-

cussed above, we propose the following compression rate
methodology (CRM):

• Obtain a large target database T of natural images;
ideally, this should be a shared benchmark database.

• Develop a theory of natural images, or extend an
existing theory in some way.

• Instantiate the theory in the form of a compression
algorithm.

• Use the compression algorithm to compress T loss-
lessly; measure the resulting total bit size of the en-
coded data and the compression program itself.

• Compare the new theory to previous ones by comparing
the compression rate achieved: smaller code lengths
indicate a superior theory.

The CRM has several immediately recognizable advan-
tages. It allows strong quantitative comparisons between
techniques. Performance can easily be verified by external
parties. The CRM allows researchers to exploit large quan-
tities of image data. Therefore, in the categorization given
above, problem #1 immediately vanishes. Furthermore, after
data compression has been accepted as the goal, there is no
further response subjectivity (#2), or ambiguity in precise
goal definition (#4). By using a large and broadly sampled
target database problem #3 is also substantially mitigated.

In Section 4 below, we will argue that the CRM is a
universal evaluation scheme by showing that many different
computer vision tasks can be reformulated as compression
problems. It may seem odd to suggest that a face recognition
method could be compared to a segmentation method, but
that is exactly what we are proposing. Of course, it is
likely that if both methods work, they can be combined
into a hybrid that achieves an even better compression
rate. Furthermore, the CRM can both evaluate and motivate
future, higher-level vision algorithms.

The main drawback of the CRM is that at first glance the
goal of computer vision and the goal of image compression
seem only tenuously connected. We argue in Section 4 that
the two goals are fundamentally the same, and show how
several standard computer vision problems can be reformu-
lated as image compression problems. Because of this deep
relationship, the field can use the methodological benefits of
the CRM to make systematic progress, and this progress will
translate directly into advances in computer vision. Before
proceeding with this argument, we make another point that
deserves its own heading.



3.1 Data Compression and Empirical Science
The following theorem is well known in data compression.

Let C be a program that losslessly compresses bit strings x,
assigning each string to a new code with length lC(x). Let
UN (x) be the uniform distribution over N -bit strings. Then
the following bound holds for all compression programs C:

E(x∼UN )[lC(x)] ≥ N (1)

When averaged over all possible N bit strings, no lossless
compression program can achieve codelengths better than
N bits. We refer to this as the “No Free Lunch” (NFL)
theorem of data compression, at it implies that one can
achieve compression for some strings x only at the cost of
inflating other strings.

The NFL theorem appears to make nonsense of the
methodology presented above: if compression is impossible
in general, why turn it into the goal of a research program?
In fact, the NFL theorem is not an obstacle, and it actually
provides one of the main motivations for the CRM. To see
this, consider the following apparent paradox: in spite of
the NFL theorem, compression programs exist and have
been in widespread use for decades. For example, the
well-known compression algorithm PNG appears reliably to
deliver compression rates in the range of 40-50% compared
to a naïve encoding format such as PPM. If compression is
impossible in general, why do we think of PNG as a “good”
compression program?

The paradox is resolved by noting that people generally
only use PNG to compress a small subset of all possible
images. People do not use PNG to compress random images,
and if they did so they would realize that PNG actually
inflates such images. In other words the strings x to be
compressed are not drawn from the uniform distribution
UN (x) but rather from a “real world” distribution RW (x),
and because of this the NFL bound no longer holds.

What is the trick that PNG uses to achieve compression,
and why does this trick work on real world images? Instead
of encoding pixels themselves, PNG predicts the pixel value
based on the values of the nearby pixels that have already
been sent, and encodes the difference between the prediction
and the actual outcome. Images drawn from the real world
distribution RW (x) generally include large regions of near-
constant color, so the differences are clustered around zero,
and compression can be achieved. So PNG works not
because of advanced mathematics, but because it depends
on a rough guess, or empirical hypothesis, about visual
reality that happens to be approximately true. Its success
in delivering good compression rates can be viewed as
empirical evidence for the hypothesis.

The NFL theorem tells us that compression can only be
achieved through this process of empirical theorizing. To
circumvent the NFL theorem, researchers must identify and
exploit the differences between real world images (RW (x))

and random images (UN (x)). To proceed the CRM re-
searcher studies the images, develops a hypothesis describing
some aspect of the images, encodes this hypothesis in the
form of a compression algorithm, and tests the hypothesis by
compressing the database. The CRM can thus be viewed as
an alternate version of the scientific method where theories
are tested by database compression rather than by experi-
mental prediction.

It is illuminating to compare this idea to Popper’s principle
of falsifiability [16]. Popper argued that in order for a theory
to be considered scientific, it must specifically forbid some
experimental outcomes. A theory that makes such explicit
prohibitions exposes itself to falsification: if a forbidden
outcome occurs, then the theory is shown to be wrong. To
achieve data compression in spite of the NFL theorem, a
theory must satisfy a similar requirement. In order to save
bits, the theory must reassign probability weight away from
certain outcomes and toward other outcomes. If a theory
reassigns probability in a way that does not align with
reality (as embodied by the database), it will end up inflating
the database and is therefore falsified. If it does not make
such reassignments, it cannot achieve compression and is
therefore unfalsifiable.

Clearly, PNG’s hypothesis of large near-constant color
regions is only a small first step of a long scientific journey.
There are many more hypotheses waiting to be made,
corresponding to further elaborations and refinements of an
empirical theory of visual reality.

4. Compression and Vision
In this section we show how three standard tasks of

computer vision (stereo correspondence, segmentation, and
face recognition) can be reformulated as image compression
techniques. These examples were chosen for ease of exposi-
tion and because they are well-grounded in the literature; it
should be clear that similar reformulations are possible for
other vision tasks. Before discussing the specific examples
we describe a general abstract framework relating computer
vision to image compression.

4.1 Abstract Framework of Computer Vision
Computer vision is often described as the inverse problem

of computer graphics. In the latter field, one starts with a
scene description DL using some description language L,
and attempts to construct the image I that would be created
if a photo were taken of that scene. The goal of computer
vision is to perform the reverse process: to obtain a scene
description DL from the raw information contained in the
pixels of the image I . To formalize this goal mathematically,
write I = I(DL)+IC where I(DL) is the image constructed
by the graphics programs and IC is a correction image that
makes up for any discrepancies. Then our goal is to make
the correction image as small as possible:



Fig. 1: Inverse relationship of graphics and vision.

D∗L = arg min
DL

C(Ic)

= arg min
DL

C(I − I(DL))

Where C is some cost function such as the sum of the
squared values of each correction pixel. This formulation is
simple, but it ignores one the major difficulties of computer
vision, which is that the inverse problem is underconstrained:
there are many possible scene descriptions that can produce
the same image. Furthermore it is often possible to produce
any target image by constructing an arbitrarily complex
description DL. The standard method of dealing with this
issue is regularization [17]. Regularization can be viewed in
a Bayesian light as asserting a prior distribution p(DL) over
scene descriptions. Incorporating the prior we obtain:

D∗L = arg min
DL

(
− p(DL) + λC(Ic)

)
(2)

Thus the goal is to balance a tradeoff between the a
priori likelihood of a scene description and the accuracy with
which it describes a scene, with the parameter λ governing
the tradeoff.

Now consider the image compression problem. We imag-
ine a sender who wishes to transmit an image I to a
receiver. The two parties have agreed in advance on a
graphics program that uses a description language L with an
associated prior p(DL), as well as a method for encoding
the correction image IC to achieve losslessness. The sender
first sends DL at a cost of − log2(p(DL)) and then sends
IC at a cost of Cenc(IC). The goal is to find a good D∗L
that minimizes the total cost:

D∗L = arg min
DL

(
− log2 p(DL) + Cenc(Ic)

)
(3)

This formulation of the problem is thus equivalent to
Equation 2, showing that the general problem of computer
vision can be formulated in terms of compression. This view
is also cleaner, as it obviates the need for a λ parameter and
makes the meaning of the cost function clear.

This perspective shows that there is another, deeper prob-
lem in computer vision that is rarely addressed because the

standard problem is hard enough. This is the problem of
choosing a description language L. It is not obvious how
the traditional conceptual framework of computer vision can
be used to solve the problem of finding a good description
language. In contrast the CRM provides a direct answer:
given two description languages La and Lb, prefer the one
that can be used to obtain better compression rates.

4.2 Stereo Correspondence
To begin the discussion of how specific vision prob-

lems can be approached from the perspective of compres-
sion/MDL, we can do no better than to quote at length from
Mumford [18] (emphasis in original):

I’d like to give a more elaborate example to show
how MDL can lead you to the correct variables
with which to describe the world using an old and
familiar vision problem: the stereo correspondence
problem. The usual approach to stereo vision is
to apply our knowledge of the three-dimensional
structure of the world to show how matching
the images IL and IR from the left and right
eyes leads us to a reconstruction of depth through
the “disparity function” d(x, y) such that IL(x +
d(x, y), y) is approximately equal to IR(x, y). In
doing so, most algorithms take into account the
“constraint” that most surfaces in the world are
smooth, so that depth and disparity vary slowly as
we scan across an image. The MDL approach is
quite different. Firstly, the raw perceptual signal
comes as two sets of N pixel values IL(x, y) and
IR(x, y) each encoded up to some fixed accuracy
by d bits, totaling 2dN bits. But the attentive
encoder notices how often pieces of the left image
code nearly duplicate pieces of the right code:
this is a common pattern that cries out for use
in shrinking the code length. So we are led to
code the signal in three pieces: first the raw left
image IL(x, y); then the disparity d(x, y); and
finally the residual IR(x, y). The disparity and
the residual are both quite small, so instead of
d bits, these may need only a small number e
and f bits respectively. Provided d > e + f , we
have saved bits. In fact, if we use the constraint
that surfaces are mostly smooth, so that d(x, y)
varies slowly, we can further encode d(x, y) by
its average value d0(y) on each horizontal line
and its x-derivative dx(x, y) which is mostly much
smaller. The important point is that MDL coding
leads you to introduce the third coordinate of
space, i.e. to discover three-dimensional space! A
further study of the discontinuities in d, and the
“non-matching” pixels visible to one eye only goes
further and leads you to invent a description of
the image containing labels for distinct objects, i.e.



to discover that the world is usually made up of
discrete objects.

Note that by following a single principle (compression),
we are led to rediscover structure in visual reality that is
otherwise taken for granted (authors of object recognition
papers do not typically feel obligated to justify the assump-
tion that the world is made up of discrete objects).

4.3 Segmentation
Our second example of how standard computer vision

tasks can be used for compression is the segmentation prob-
lem. The idea of using MDL to do segmentation has been
followed by several authors [4], [6]; we will consider the
well-known paper by Zhu and Yuille [5]. The segmentation
problem is formulated as a minimization of the functional:

M∑
i

{
µ

2

∫
∂Ri

ds− logP (Ix,y : (x, y) ∈ Ri|αi) + λ

}
(4)

This functional is a sum over segmented regions. There
is an cost associated with the region boundary (contour
integral), a cost resulting from encoding a set of pixels given
a particular region model (logP term), and a constant cost
for encoding a region model (λ). The goal is to find a good
set of region boundaries ∂Ri and associated region model
parameters αi that minimize the sum. This illustrates a
competition between the need for simple region boundaries,
a small number of regions, and good models for the pixels
in each region.

The above scheme fits perfectly into the general goal of
segmentation, which is to produce simple regions made up
of homogeneous pixels. Unfortunately there is no standard
definition of the words “similar” or “homogeneous”. The
MDL view of the problem is thus attractive because it
provides clean definitions for both words. A simple boundary
is one which can be encoded with a short code (contour
integral term in Eq. 4). A group of pixels is homogeneous
if a statistical model can be found that encodes them with
a short net code (logP term). Segmentations that use many
regions are also penalized, because each region requires us
to encode a new set of model parameters (λ term).

Note that the focus of the paper [5] is on the development
of an algorithm for finding a good minimum of Equation 4.
Little effort is spent on finding good region models or
efficient boundary encoding methods. The paper reports
only segmentation results, not compression results. This is
because the compression idea is viewed simply as a trick
that allows good segmentations to be obtained. Of course,
our goal is to advocate the opposite approach.

4.4 Face Detection and Modeling
Imagine that the target T used in the CRM is the image

database hosted on the popular internet social networking

site Facebook. This enormous database contains many im-
ages of faces.

Faces have a very consistent structure. There is a sig-
nificant literature on modeling faces [19], [20], and several
techniques exist that can produce convincing reproductions
of face images from models with a small number of pa-
rameters. Given a starting language L, by adding this kind
of model based face rendering technique we can define a
new language Lf that contains the ability to describe scenes
using face elements. Since the number of model parameters
required is generally small and the reconstructions are quite
accurate, it should be possible to significantly compress the
Facebook database by encoding face elements instead of raw
pixels when appropriate.

However it is not enough just to add face components
to the description language. In order to take advantage
of the new face components of the language to achieve
compression, it is also necessary to be able to obtain good
descriptions DLf

of images that contain faces. In other
words, a face detection algorithm is required, and its quality
will strongly influence the overall compression rate. Notice
what this implies: a vast but completely unlabeled image
database can now be used to evaluate the performance of a
face detection system.

5. Compression and Learning
In this section we argue that the CRM provides a new way

of thinking about learning. This new viewpoint allows the
exploitation of vast data, making it potentially much more
powerful, and is much closer to the natural setting of the
learning problem.

5.1 Great Insight of Learning Theory
The standard formulation of statistical learning is well

expressed in the first sentence of the great work of Vapnik [7]
(emphasis in original):

In this book we consider the learning problem
as the problem of inferring a desired dependence
from a limited set of data.

Vapnik’s concern with the limited size of the data available
can be explained by noting two facts, one theoretical and
one practical. The practical fact is that traditional statistical
learning problems almost always employ limited amounts
of training data. The theoretical fact, which can be called
the “Great Insight of Learning Theory”, has been articulated
in different ways by different authors [7], [8] but can
be summed up roughly as follows: in order to achieve
generalization, the complexity of the model used to describe
a data set must be smaller than the information content of
the data itself. Thus, in order to achieve good generalization
in limited-data learning problems, we must be fanatical about
finding the simplest possible model.

From the perspective of computer vision, Vapnik’s empha-
sis on the limitations of the data available seems somewhat



Fig. 2: The Great Insight of Learning Theory: in this low-
data regime we should prefer the simple line model, even
though the complex model achieves zero error.

inappropriate. Of course in computer vision there is also a
sharp limit on the amount of labeled data, but raw unlabeled
data can be obtained cheaply and in vast quantities. Note also
that the Great Insight specifically allows the construction of
highly complex models, it only demands that such models
by justified by correspondingly large amounts of data. For
example in Figure 2, if there were thousands of data points
which all fell along the complex polynomial curve, we would
certainly be justified in selecting it.

In the CRM models are justified simply by showing that
they achieve net codelength reductions. For example, one
could justify the use of a model requiring 100 Mb to specify
(larger by orders of magnitude than the models used in
typical learning research) by showing that it saves 500 Mb
when used to encode a 10 Gb image database. Of course,
simpler is always better: if a 10 Mb model can be used to
achieve the same savings, it should be preferred.

5.2 CRM-based Object Recognition Procedure
Given an object recognition problem, the following two

step process is often followed (Fig. 3). The first step is to
apply some sort of lossy compression or feature selection
method to the data. This transforms the data into a low
dimensional intermediate representation. In the second step
a learning algorithm is applied, such as AdaBoost [21] or
Support Vector Machine [7]. The success of the process
depends on the effectiveness of both steps, and so it is
difficult to evaluate either step in isolation.

The CRM idea suggests the following three-step process
for object recognition (Fig. 4):

• Given an image I and a scene description language L,
run an inference process to obtain a lossless description
of the scene DL.

• Discard the low-level details of the description. This
results in a lossy, abstract scene descriptions D′L.

• Apply the classifier to the lossy description D′L.

Fig. 3: “Typical” two-step process of solving object recogni-
tion problem. There is no way to evaluate the effectiveness
of the first step independently of the second step.

Fig. 4: Three step process of object recognition. Here, the
first step can be evaluated independently of the rest of the
process using the CRM.

The key benefit of this approach is that the first step can
be attacked independently of the object recognition problem
by CRM research. Furthermore, while the classification
models must be simple as they are justified by small labeled
databases, the models for the first step are justified by the
large unlabeled databases used in the CRM. Thus, the first
step implements a highly complex transformation into an
abstract representation, after which a simple model can be
used to predict the label.

For an example of how this might work in practice,
consider the well-studied handwritten digit recognition prob-
lem [22]. The goal is to obtain a good model p(Y |I) for the
probability of the label Y given the image I . The CRM idea
suggests a indirect approach: first find a good description
language L for the images themselves, as well as a good
inference process for finding descriptions DL. The success
of such efforts can be evaluated by compressing the database
of digit images and comparing compression rates. If this
problem can be solved well, the problem of learning the
relationship between descriptions DL and labels Y should
be much easier and perhaps even trivial.

5.3 Natural Setting of the Learning Problem
Research in learning and vision is valuable not just be-

cause of the hope for practical applications, but also because
it may reveal insights into the human brain. To achieve this
latter goal, the learning problem should be studied in its
natural setting. Learning algorithms should use the same type
of input data that is available to human children.

This principle favors the CRM over traditional supervised
learning problems. Children do not have access to ground
truth data to help them learn how to segment scenes. They do



not have access to large labeled databases to help them learn
how to recognize objects. The main data resource children
have access to is the enormous wealth of raw, unlabeled
visual experience they begin to accumulate at birth.

This emphasis on approaching intelligence in its natural
setting was also advanced by Brooks [23]. Brooks accused
the AI community of “puzzlitis”: researchers would invent a
logical puzzle and then create an AI system that could solve
the puzzle. Brooks proposed that researchers should face
reality by building robots, putting them in the real world,
observing the problems they encountered, and then solving
those problems. The CRM provides a similar, reality-driven
principle for guiding research.

The CRM has many interesting connections to other ideas
about learning and the brain. One such link is to the idea of
redundancy reduction as a principle underlying the activity
of the brain [24]. If this longstanding hypothesis is correct, it
provides a direct motivation for interest in compression for
vision research. The CRM can provide a way to justify the
construction of “deep belief nets”, a topic of recent interest in
machine learning [25]. The CRM philosophy is also strongly
related to Hinton’s idea that in order to do object recognition,
one should first learn to generate shapes [26].

6. Conclusion
Evaluation has always been a hard problem in computer

vision. This paper began by documenting some of the
difficulties and limitations of previous evaluation methods.
One obvious problem is the practical difficulty of obtaining
large supplies of ground truth data. A subtler problem is the
necessity of making subjective decisions about what ground
truth result should be considered correct.

Motivated by a desire to sweep these issues aside, and
place the field of computer vision on firm empirical ground,
we proposed a new research methodology based on com-
pression of large image databases. This methodology has
substantial advantages. It does not require the use of ground
truth or labeled training data, and permits rigorous com-
parisons of techniques. It is also general in the sense that
a large number of techniques can be evaluated by a single
performance criterion. Furthermore, the NFL theorem shows
that data compression can only be achieved by discovering
and exploiting empirical regularities in natural images.

We also discussed the new perspective on the learning
problem provided by the CRM. The CRM is much closer
to the natural form of the learning problem encountered by
intelligent agents. Furthermore, by learning from vast data,
the CRM allows us to justify the construction of enormously
complex models.

The main objection to the CRM regards practicality. In
Section 4 we showed how several standard computer vision
tasks can be reformulated as compression problems. This
shows that the CRM does include practical research, though
it may also include impractical or obscure research. This

does not trouble us, as history shows that pure empirical
science is worth pursuing for its own sake.
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