
Statistical Modeling as a Search for
Randomness Deficiencies

Daniel Burfoot

Graduate School of Information Science and Technology
University of Tokyo

Supervisor: Yasuo Kuniyoshi

A thesis submitted for the degree of

Doctor of Philosophy

March 2010



This thesis is dedicated to my parents.



Acknowledgements

This thesis would not have been possible without the help of many people.
Professor Yasuo Kuniyoshi has all the best qualities one could hope for
in a supervisor. He is full of insights and advice, not only about research
topics, but about the wider world as well. He has also been very generous
in allowing me the freedom to pursue topics of special interest to me. Most
importantly, he is a friendly and warm-hearted person.

Professor Tatsuya Harada is an inspiration as a hard-working and brilliant
researcher, and is also very fun to talk to. I am very thankful to him for
many comments on this thesis and on my other work.

I would also like to thank the students of the ISI laboratory, who are
friendly, smart, diligent, and helpful. I especially thank Cota Nabeshima,
who helped me get adjusted to life in the lab and in Japan. I would also
like to thank the secretaries Sachiko Tamura and Mioko Tomaru, who were
always willing to help me with various forms and paperwork, and always
did so with a smile.

Dr. Max Lungarella played a key role in this thesis, by encouraging me
to become interested in information theory. Max is a brilliant and friendly
guy, and also a great gym partner. I am grateful to Dr. Tetsunari Inamura
for many interesting conversations and for assistance with the research
in Chapter 10. Martin Budi provided crucial assistance for the speech
modeling research described in Chapter 9. Genevieve Patterson helped
with the proof of monotonicity of h(β) mentioned in Chapter 4.

My studies were supported by a scholarship from the Japanese Ministry of
Education, Culture, Sports, Science and Technology.

Finally, I would like to thank my family for their unwavering love and
support over many years.



Abstract

The basic goal of statistical modeling is to find a good approximationQ(x)

of an unknown real world distribution P (x), by using an observed data set
X. If X is encoded as a bit string using the distribution P (x) that generated
it, then the resulting bit string will be random. Thus we can determine if a
model Q(x) is good by using it to encode the data set, and then searching
the resulting bit string for randomness deficiencies.

This thesis develops an algorithm called PITA based on the above idea.
Instead of bits, PITA uses the Probability Integral Transform to encode
the data set as a sequence of values distributed on the [0, 1) interval. A
randomness deficiency is revealed by an uneven histogram of PIT values.
If an uneven PIT histogram is found, an update based on the histogram
can be applied to improve the model. The improvement in log-likelihood
achieved by applying this update is a simple function of the histogram bin
counts. The PITA algorithm uses this model update method, along with
a set of feature functions, to produce a complex feature-based conditional
model Q(x|c), where c is a context. PITA proceeds iteratively, and in each
round a smart feature scoring method is used to select the feature that will
provide the best model improvement.

The PITA algorithm is quite general. This thesis demonstrates how the
algorithm can be applied to the tasks of image compression, binary pat-
tern classification, speech and word morphology modeling, and motion
recognition. A key advantage of PITA is that it can be layered over some
other initial model of the data. In the word morphology application, bi-
gram models are used for initialization, while in the motion recognition
application, Hidden Markov Models are used. In both cases the combined
model provides improved performance.
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Chapter 1

Introduction

1.1 Three Views of Statistical Modeling

This thesis advances a new perspective on the problem of statistical modeling. Sta-
tistical modeling is the attempt to obtain, on the basis of an empirical data set X =

{X1, X2 . . . XN}, an estimate for the probability distribution P (x) that generated the
data. This goal immediately raises a variety of philosophical and technical questions.
One central question is: given that the real distribution is unknown, how can the quality
of the estimate be assessed?

The following list gives three answers to that question, corresponding to three dif-
ferent perspectives of statistical modeling. The views are deeply related to one another,
but contain important differences of emphasis. Each view has a principle, and a for-
mulation, as follows:

• Traditional Statistics: Maximum Likelihood Principle,
Formulation: Choose model class M, search for optimal model parameters θ∗

• Information Theory: Maximum Compression Principle,
Formulation: Choose model class M, search for optimal model parameters θ∗

• Algorithmic Information Theory (AIT): Maximum Compression Principle,
Formulation: Encode data as bit string, search for randomness deficiencies

As the list shows, the transition from the traditional statistics view to the AIT view
involves two steps. The first step suggests a new goal for the modeling process. The
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1.1 Three Views of Statistical Modeling

second step suggests a new way to achieve the goal. Considered separately, both steps
are quite small. Together, they lead to a substantially different perspective on statistical
modeling. This thesis is about the AIT view, but for the sake of conceptual develop-
ment a brief discussion of the other two views is now given.

In traditional statistics one employs the Maximum Likelihood Principle. This prin-
ciple suggests that given a model class M with associated parameters θ, we should
choose the optimal parameters θ∗ that maximize the probability of the data given the
model:

θ∗ = arg max
θ
P (X|θ) (1.1)

The Maximum Likelihood Principle is well established, and can be used to solve
many problems. However, it has certain conceptual drawbacks. One drawback is that
it can lead to overfitting. If the model class M is complex enough, then the fact that
some choice of parameters assigns high probability to the data set tells us nothing. The
standard example of overfitting happens when one attempts to fit a Gaussian mixture
model with 100 components to a set of 100 data points. By choosing the means of the
mixture components to be exactly equal to the data points, and setting the variances to
nearly zero, a very high probability can be achieved. However, this “comb” model is
obviously worthless: it has simply overfit the data.

A second drawback to the Maximum Likelihood idea is that it is difficult to connect
the notion of “likelihood” to anything tangible in the real world. The statement that a
model assigns a probability of 8.5 · 10−12494 to a data set is not intuitively significant.
Furthermore, if a complex model is used to describe a large data set, it can be difficult
to verify the legitimacy of the model.

To understand this point, imagine a Maximum Likelihood Contest in which the
goal is to find a model that assigns the highest probability to a complex data set X. The
current top ranked model achieves a likelihood of 3.4 · 10−15112 on the data set. Then
a challenger submits a new model, implemented in a software program. The referee
tests the program by invoking it on the data set. After running for a while, the program
prints out:

Modeling complete: likelihood is 7.7 · 10−10752.

2



1.1 Three Views of Statistical Modeling

If this claim is legitimate, then the new model is superior and should be declared
the new leader of the contest. But it is very difficult for the judge to verify that the
model follows the rules of probability theory and that the software does not contain
any bugs.

A more satisfying view of statistical modeling comes from replacing the Maximum
Likelihood Principle with the Maximum Compression Principle. Now the goal is to
losslessly compress the data set X to the smallest possible size. Lossless data com-
pression is basically a hard problem, because the number of short codes is intrinsically
limited. For example, there are only 23 = 8 codes of length 3 bits. Thus, to obtain
the shortest net codelengths, one must assign the scarce short codes to the common
outcomes, while using longer codes for the uncommon outcomes.

The theory of information, due to Shannon (1948), provides an exact answer to
the question of how to choose optimal codelengths. Shannon showed that the opti-
mal codelength for an outcome x is related to the probability of x by the equation
L(x)= − log2 P (x). Any other codelength function L(x) will produce larger expected
codelengths. Therefore, the problem of compression now becomes a problem of statis-
tical modeling: to get the shortest possible codes, it is necessary to obtain an estimate
Q(x) of the distribution P (x) that generated the data. The better the estimate, the
shorter the resulting codes will be. Profoundly, then, the Maximum Compression Prin-
ciple leads to the same formulation as the Maximum Likelihood Principle. Given a
model class M with associated parameters θ, one chooses optimal parameters θ∗ by
minimizing L(X):

θ∗ = arg min
θ
− log2 P (X|θ) (1.2)

= arg max
θ
P (X|θ) (1.3)

One advantage of the Information Theory view is that codelengths are a much more
tangible quantity than likelihoods. When someone says he has compressed a database
X to a length of 4.8 · 106 bits, it is quite clear what this means. If the previous best
compression result was 7.3·106 bits, then it is obvious that the new model is superior to
the previous one. Furthermore, adopting the codelength perspective solves the problem
of verifying the legitimacy of complex models implemented in software. One simply
takes the compressed data file, measures its length in bits, and then decompresses it. If

3



1.2 AIT View of Modeling

the decompressed version of the data does not exactly match the original version, then
there is a bug in the model. For this reason, a Maximum Compression Contest is much
easier to referee than a Maximum Likelihood Contest 1.

It is also worth noting that a variant of the Maximum Compression Principle can
be used to avoid overfitting. This is called the Minimum Description Length Princi-
ple [Rissanen (1978)]. This principle instructs us to calculate the codelength required
to encode the model itself, and then attempt to minimize the total codelength of the
encoded data plus the model.

The focus of this thesis is on the third item in the above list, the AIT view of statis-
tical modeling. This view starts from the Maximum Compression Principle and then
asks the following general question: when is it possible to compress a bit string? The
answer comes from the field of Algorithmic Information Theory (AIT), and in particu-
lar from the theory of randomness [Li & Vitanyi (1997); Martin-Löf (1966)]. The deep
realization is that a bit string can be compressed if and only if it has a randomness de-
ficiency. To detect a randomness deficiency in a bit string, one applies a statistical test
to it. A randomness deficiency is revealed if the result of the test deviates substantially
from what would be expected from a random string. For example, consider a statisti-
cal test that measures the frequency of 1’s occurring after the prefix 0110. In a random
string, this frequency should be nearly 50%. If the measured frequency in the encoded
bit string is substantially different from 50%, this indicates a randomness deficiency.

If a randomness deficiency is present, it can be exploited to reencode the string;
the resulting string will be shorter and more random. Thus, instead of working with
probabilities as is generally done in statistical modeling, the basic strategy of the AIT
view is to encode the dataset X and then search the encoded data for randomness
deficiencies. We elaborate on this idea in the next section.

1.2 AIT View of Modeling

A basic description of the AIT view of modeling is as follows. First, the data set X
is transformed into a bit string using some standard encoding scheme (such as ASCII
text). Then a large battery of statistical tests is applied to the string. If one of the

1Indeed, several such contests already exist, for example the Hutter Prize:
http://prize.hutter1.net/.

4
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1.2 AIT View of Modeling

Figure 1.1: Key Figure of thesis: the AIT view of statistical modeling. The data
is first encoded using some naı̈ve encoding method such as ASCII text. Then the
encoded data (Si) is searched for randomness deficiencies. If one is found, a green
transformation can be applied to reencode the string; the resulting string is shorter and
more random. At each stage, we have Ti(Si+1) = Si, so that the original data can
always be reconstructed.

5



1.2 AIT View of Modeling

tests reveals a randomness deficiency, it is used to compress the string. The resulting
reencoded string is shorter and more random. The search and reencode process is
repeated until all the statistical tests indicate that the string is random. An illustration
of this idea is shown in the Key Figure 1.1. Note that the green transformations are
obtained simply by combining a statistical test with an appropriate set of parameters.

The traditional view of statistics involves two basic objects of interest: the real
data and the model. The AIT view intoduces a fundamentally new object: the encoded
data. As discussed below, feature selection and feature combination are hard problems
in the traditional view. But by introducing the concept of encoded data, these problems
become almost trivial.

An important realization is that the set of transformations Ti in the AIT view plays
the same role as a statistical model in the traditional view. To find the probability of a
new data set X′, the green transformations are applied to it, resulting in a new encoded
bit string of length L(X′). The corresponding probability is P (X′) = 2−L(X′).

Any data set can be thought of as containing two parts: a structure component
and a purely random component. In this view, the goal of statistical modeling is to
separate or “distill” the structure from the randomness. In the Key Figure 1.1, the
green transformations represent the structure, while the encoded data remaining at the
end of the process is the pure randomness.

Note also that the green transformations of the Key Figure 1.1 can be run both
ways, corresponding to encoding or decoding. If the decoding transformations are
applied to the bit string remaining at the end of the modeling process, the original data
set is reconstructed. If, on the other hand, the decoding transformations are applied to
a new random bit string, the result is a sample from the model. The resulting sampled
dataset should “look like” the original data. This technique becomes very interesting
when one considers more complex models for things like images or sentences. If a
good model for the probability of a sentence can be learned, then sampling from the
model will produce “typical” sentences. In practice it is generally impossible to obtain
a perfect model for complex data types, so the sampled data will differ from the real
data. This is also useful: by analyzing the differences between the real data and the
sampled data, one can discover the limitations of the current model. Then the model
can be modified to repair the limitations.

6



1.2 AIT View of Modeling

A key point regarding the idea of randomness deficiencies is that, for a string to be
random and therefore incompressible, it must satisfy a very large number of statistical
tests. Consider a binary string S. Then to be random, the frequency of 1s must be
approximately 50%, the frequency of the substring 01 or any other 2-bit block must
be about 25%, the frequency of the substring 011, or any other 3-bit block, must be
about 12.5%, and so on for longer blocks. Furthermore, the conditional frequencies
obtained when counting only blocks that satisfy some condition, should be exactly the
same as the non-conditional frequencies. For example, the frequency of the block 101

observed after the prefix 010 should be about 12.5%. Similar statements can be made
using any other prefix. One can imagine a great variety of exotic conditions. In a
random string the frequency of 01 blocks in positions indexed by triangular numbers
(1, 3, 6, 10 . . . ) must be approximately 25%. If one indexes positions by the recursion
relation gi+1 = gi + ni, where ni is the ith digit in the decimal expansion of

√
2, then

the frequency of 0011 at positions Sgi must be approximately 6.25%.
An interesting connection exists between the AIT view of modeling and the much-

studied problem of profiting from the stock market. Stock traders implement the same
basic process of searching for and exploiting randomness deficiencies. For stocks the
encoded data is the stream of price changes. If a randomness deficiency is found in this
stream, it can be exploited to make money. For example, if one finds that Microsoft
stock usually goes up on Friday, then one can exploit this fact by buying Microsoft
stock on Thursday. Once someone starts doing this, the structure is removed: instead of
usually going up on Friday, the stock will now go up (less) on Thursday. Again, there
is an enormous number of possible types of randomness deficiencies. It is possible
that Microsoft stock always goes up on days when Google stock goes down and the
dollar-yen exchange rate changes by more than 5%. The idea that the path of stock
prices should look very much like a random walk is known as the “efficient market
hypothesis” in economics [Fama (1970)].

It should be noted that the AIT view of modeling is not necessarily superior to
the other views. All of the same deep philosophical issues remain. The problem of
overfitting occurs if a transformation is applied that is too complex relative to the per-
formance improvement it achieves. The problem of choosing a prior is equivalent to
the problem of choosing a set of statistical tests. Adopting the AIT view is not auto-

7



1.2 AIT View of Modeling

matically beneficial. However, as is often the case, new approaches can be found by
looking at a problem in a new light.

1.2.1 Conceptual Barriers to AIT View

The basic concepts of Algorithmic Information Theory and the theory of randomness
have been known for quite some time. In spite of this, the AIT view is not widely
used in machine learning. Two conceptual barriers have impeded progress in this area.
The first barrier is simply that bits are very hard to use. This is because there is no
one-to-one mapping between bits and real data samples. Due to the Shannon relation
L(x) = − log2 P (x), outcomes that are assigned high probability will use a small
number of bits, while low probability outcomes will require many bits.

The second conceptual barrier is a limited understanding of what a statistical test
is, and to what types of data it can legitimately refer. In the “typical” understanding of
data compression and the AIT view, the original data is forgotten immediately after it
is transformed into a bit string. Statistical tests refer only to previous bits of the string,
not to the original data set. Also, statistical tests are not allowed to refer to an external
information source. Thus, the typical understanding allows only the first test in the
following list:

1. Test (any bit string): Count the frequency of 1s in the encoded data after the
prefix 0110.

2. Test (image compression): Count the frequency of 1s in the encoded data corre-
sponding to pixels where the previous pixel has a value less than 50.

3. Test (pattern classification): Count the frequency of 1s in the encoded data cor-
responding to labels Xk where the associated pattern Ck satisfies W (Ck) = 1,
where W (·) is some binary context function.

Allowing statistical tests to refer to the real data or to external data sources is quite
important for practical reasons. It is much easier to define the statistical tests in terms
of the original data (e.g.: the previous pixel is less than 50) than in terms of encoded
data (e.g.: the previous bits were 0101). Furthermore, one of the core problems of
machine learning is to predict a set of labels X from a set of contexts or patterns C.
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In this case, tests that refer to previous bits in the encoded version of the X data are of
very limited value. It is much better to use tests that refer to information contained in
the contexts C.

1.2.2 Probability Integral Transform Value Analysis (PITA)

The research in this thesis is built on two insights that overcome the conceptual barriers
mentioned above. These insights allow us to use the AIT view illustrated in the Key
Figure 1.1 for practical purposes.

The first insight, elaborated in Section 2.1.1, is that the encoded data of the Key
Figure 1.1 does not need to be represented as a bit string for the basic process to work.
Instead, we use a technique called the Probability Integral Transform to transform data
outcomes into values distributed on the [0, 1) interval [Angus (1994)]. Technically
these numbers are called “Probability Integral Transform Values”, but we will use the
shorthand “PIT values”. The key advantage of using PIT values for the encoded data is
that there is always a one-to-one relationship between PIT values and data outcomes.

The second idea is just to expand the notion of what kinds of statistical tests can
be used in the modeling process. In the algorithm developed below, the statistical tests
are allowed to refer to the original (non-encoded) data. Tests can also refer to external
data sources, specifically the patterns used in the pattern classification problem.

By using these two insights, in Chapter 3 we develop an abstract algorithm called
Probability Integral Transform value Analysis (PITA), which is a practical version of
the process illustrated in the Key Figure 1.1. This algorithm uses a battery of statistical
tests W to search for randomness deficiencies in a sequence of PIT values representing
some set of data outcomes X . Each data outcome is associated with a context. The
statistical tests (also called “context functions” or “features”) are based on information
contained in the contexts C. If a test reveals a randomness deficiency in the PIT value
sequence, it is used to update the models and reencode the PIT values.

While the core of the thesis involves the PITA algorithm and its applications, it
should be emphasized that the AIT view of modeling is quite abstract. The PITA
algorithm is only one possible technique that can be developed on the basis of the
AIT view. There are many different ways to detect randomness deficiencies, and many
different ways to transform encoded data to exploit randomness deficiencies.
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1.3 Motivating Examples

The basic purpose of the PITA algorithm is to combine predictive information drawn
from different sources (context functions and features) into one aggregate probabil-
ity distribution. This section presents two examples where naı̈ve approaches run into
difficulty and PITA is effective.

1.3.1 Example #1: Prediction of Election Results

Consider the problem of the predicting the results of an election. The outcome of an
election depends on hundreds of factors, including the state of the economy, the po-
litical platforms advocated by the different parties, and the personal characteristics of
the candidates. Assume a historical data set exists which records the outcome of the
election (X), as well as various information about the political and economic condi-
tions (C) at the time of the election. In particular, the following facts (or features) are
recorded:

• W1(C): over the last year, economic growth has exceeded the historical average.

• W2(C): over the last year, unemployment has been lower than the historical
average.

• W3(C): over the last year, the ruling party has been involved in a scandal.

• X: true if the ruling party remained in power after the election.

The goal of the analysis is to predict the variable X based on the information
contained in the context functions Wi(C). Since the features can be calculated before
an election, a good model Q(x|c) can be used to predict the outcome of an election.

1.3.2 Example #2: Pixel Modeling

As a second example, consider the following problem which relates to modeling the
distribution of pixels in an image. The target image is traversed row-by-row, pixel-by-
pixel. There is a set of context functions which operate on the pixel history. Combining
the result of these context functions with the actual pixel outcomes produces a dataset
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that has the same basic form as the one described above. The data set might contain
samples that include the following information:

• W1(C): true if the current color channel is “red”.

• W2(C): true if the value of the previous pixel was < 50.

• X: actual pixel value.

Note that in this case the entire database comes from a single image. An image of
size 640 ·480 ·3 is a dataset with 921,600 outcomes. The four histograms in Figure 1.2
show the distribution of pixels, conditional on the binary context functionsW1 andW2.

Given this information, the goal is to build a model Q(x|c) of the probability of
a pixel value given the pixel history. This problem is essentially equivalent to the
problem of losslessly compressing the image. The image can be compressed if a good
model Q(x|c) ≈ P (x|c) can be found.

1.3.3 Feature Combination

In both of the example problems mentioned above, the goal is to obtain a good approx-
imation Q(x|c) of the “real” distribution P (x|c), where x is either the election result
or the pixel outcome, and c is the context.

The simplest, and often the most effective, methods in statistical modeling involve
plain counting. If there were no context information C, the best model is obtained
simply by counting the X outcomes of each type. If the historical data set records 145
elections in which the ruling party won, and 87 elections in which the opposition won,
then we approximate Q(X = T ) = 145/(145 + 87) ≈ 63%.

Counting can work even with context information, by splitting the data set into
subsets based on the context. Say the context outcome takes only two values, C = Ca

and C = Cb. Then Q(x|c) can be estimated by using the same counting trick on the
subsets Ca and Cb. Unfortunately, simple counting tricks cannot be used when the
number of context outcomes is large. In this case, the context-specific subsets will
be too small for the counts to be reliable. Assume the context in the pixel modeling
problem is limited to include only the previous 5 pixels of the same color channel. Even
with this strict restriction, the number of possible context outcomes is 2565 ≈ 1012.
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Unless the data set is truly vast, most of the subsets defined by these contexts will be
empty.

The problem can be simplified by introducing a set of context functions Wi(c) and
building models of the form Q(x|W1(c),W2(c) . . .) If the context functions are binary,
then using Wi(c) collapses the large context space into a single bit. Because of this
collapsing effect, when using a small number of context functions, the data subsets
will be reasonably large, so the counts will be reliable. However, if even a moderate
number of features are used, the same problem comes up again. For example, if only
three features are used the number of combinations is 23 = 8. But if 100 features are
used, then the number of combinations is 2100.

This combinatorial explosion can be avoided by conditioning on only one Wi fea-
ture at a time. Doing so will produce statistics for the data subsets corresponding to
Wi = 1 andWi = 0. These subsets should be large enough to make the counts reliable.
But now there is a new problem, which is how to combine the individual Wi statistics
into one aggregate distribution Q(x|W1(c),W2(c) . . .).

The most obvious answer to this question is a method is called naı̈ve Bayes. Given
a feature outcome Wi = 1, naı̈ve Bayes updates a model probability Q(x) as follows:

Q′(x) :=
1

Z
N(x|Wi = 1)Q(x) (1.4)

Where N(x|Wi = 1) are empirical frequencies, and Z is a normalization factor.
This update is just a modified form of Bayes’ rule.

The problem with naı̈ve Bayes is that it assumes the features Wi are independent.
To see the problem with this assumption, imagine that in the election prediction prob-
lem it is found that N(X = 1|W1 = 1) = .9 and N(X = 1|W2 = 1) = .9 (recall
the W1 refers to economic growth, while W2 refers to unemployment). Now say that
the features for the new election are W1 = W2 = 1. Then the naı̈ve Bayes scheme
will predict a 98.78% chance of victory for the incumbent, or 81:1 odds. But that es-
timate is too high; because W1 and W2 are not independent. Knowing either W1 = 1

or W2 = 1 may raise the odds from 1:1 to 9:1 in favor of the ruling party, but know-
ing both should not increase the odds by another factor of 9. This is because the two
features both relate to the economy, so they contain a lot of overlapping information.

A similar problem arises in the pixel modeling problem. Given the information in
either context function W1 or W2, it is easy to obtain a conditional model Q(x|W1(c))
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or Q(x|W2(c)). These distributions would be exactly equal to the histograms shown
in Figure 1.2. But it is quite difficult to combine the information to obtain a model
Q(x|W1(c),W2(c)).

The PITA algorithm solves this problem as follows. The algorithm proceeds iter-
atively, adding a new context function Wi in each round. The trick is to take counts
relating to the PIT values (encoded data) instead of the pixels (original data). Note that
the PIT values depend on the current state of the model, while the pixels do not. The
PIT value statistics obtained using the model Q(x|W1(c)) contain the exact informa-
tion necessary to update the model.

The PIT value distributions for the pixel modeling problem are shown in Figure 1.3.
Notice how the top histograms are identical to Figure 1.2, but the bottom histograms
are different. This is because the PIT values are recomputed when the update corre-
sponding to W1 is applied. The bottom histograms show the W2-conditional distribu-
tion of PIT values obtained using the updated model Q(x|W1(c)).

1.3.4 Feature Selection

Feature selection is an important and related problem, which arises when there is a
large number of features Wi (say, millions). A model that uses all of these features
will not only waste huge amounts of computational power but also almost certainly
overfit the data. It is much better to create a model using only the best features. To do
this requires a method for finding the best features.

A basic strategy would be to score all the features in terms of predictive power, and
then use only the top features determined by this ranking. The predictive power of a
feature Wi could be measured by the correlation or the mutual information between
Wi and the outcome variable X . This strategy does not work well, for the same basic
reason as above: in the real world, features are not independent.

Consider the election prediction problem again, and assume that the predictive
power (S) of the three features has been found to satisfy: S(W1) > S(W2) > S(W3).
Based on this ranking the naı̈ve feature selection algorithm would first add W1, then
W2, and then W3. But this is not correct, again because W1 (economic growth) and
W2 (unemployment) are highly related. Once W1 is added, the additional predictive
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Figure 1.2: Basic image statistics. The top plots show the distribution of red and
non-red pixel values. The bottom plots show the distribution of pixel values when the
previous pixel is less than 50 or greater than 50.
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Figure 1.3: The top histograms show distributions of PIT values, generated using a
uniform model Q(x), corresponding to red vs. non-red pixels (W1). The bottom his-
tograms show distributions of PIT values generated using the model Q(x|W1(c)), cor-
responding to positions where the previous pixel was less than or greater than 50. The
top histograms are basically identical to those in Figure 1.2. The bottom histograms
are different, because the PIT values come from the updated model.
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power produced by W2 is quite small. Therefore, after W1 is added, it is better to add
W3, because it relates to to a different type of information (scandal).

Smart feature selection requires a way of measuring the improvement in predictive
power achieved by adding a feature to the model. Obvious feature scoring methods,
such as mutual information and correlation, refer only to the feature and the data:
S = S(Wi,X). Such scores do not take into account the current state of the model and
are therefore insufficient. A smart score must be a function S = S(Wi, Q@,X), where
Q@ is the current state of the model.

In the PITA framework, the feature score is completely natural. It is simply the
mutual information between a test Wi and the encoded data (PIT values) Φ. Since
the encoded data is a function of both the real data and the model, Φ = Φ(Q@,X),
the mutual information I(Wi,Φ) is of the form S = S(Wi, Q@,X) as required. The
mutual information between a test Wi and the encoded data Φ can also be interpreted
as a measure of the magnitude of the randomness deficiency in Φ revealed by Wi.

1.4 A New Mindset for New Applications of Statistics

A basic philosophical postulate of this thesis is the existence of data sets with “rich” or
complex structure. The definition of a rich data set is one that cannot be described well
using a simple model. An interesting two-dimensional taxonomy of data sets can be
built using the notion of the richness of a data set, along with its size. Some examples
of the different categories are given in the following list:

1. Small, plain structure: a dataset giving the heights of 100 people.

2. Large, plain structure: a dataset giving the heights of 108 people.

3. Small, rich structure: data from a clinical trial to test the efficacy of a new drug;
data from a psychology experiment with N = 257 participants.

4. Large, rich structure: large text corpuses, image databases, databases of speech
recordings, motion capture databases.

Historically, the main applications of statistics have been to fields such as psy-
chology, genetics, biology, medicine, and economics. Two important characteristics of
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these fields have influenced statistical thinking. First, it is often the case that real world
data is actually distributed according to some standard, well-known distribution such
as the Gaussian or the Laplacian. Second, the amount of data available is generally
quite limited; in medical statistics each data sample comes from a person whose life is
potentially at risk. Thus, the datasets generated in these fields are usually of case #1,
case #2, or case #3 in the above list. For plain data, there is nothing to be gained by
using a complex model. In case #2 it is possible to justify the use of a complex model,
but there is no point in doing so, since the data can be described well using a sim-
ple Gaussian distribution. Much research in medicine, psychology, and related fields
involves data sets of type #3. For example, the physiological response of the human
body to a drug is certainly a very complex process. However, the data sets available in
medical statistics are almost always very small. Because of this, simple models must
be used to avoid overfitting. Classical statistics, which relies almost exclusively on the
use of simple models, works fairly well on these types of problems.

In recent decades, researchers have attempted to apply statistical methods to fields
such as computer vision [Huang & Mumford (1999); Nakayama et al. (2009)], speech
understanding [Gazor & Zhang (2003b); Sohn et al. (1999)], motion understanding [In-
amura et al. (2004)], and natural language processing [Rosenfeld (1996)]. These new
applications deal with data sets that correspond to type #4 in the above list. Large
quantities of data can be obtained, and there are good reasons to believe that complex
models can provide better descriptions of the data than simple models can.

A central philosophical goal of this research is use of large data bases to construct
complex models [Burfoot & Kuniyoshi (2009); Burfoot et al. (2008)]. This goal is
based on the belief that some real-world phenomena cannot be described well using
simple models. This is an abstract empirical statement about the nature of reality. The
thesis does not attempt to prove this belief; doing so may be impossible. The statement
is simply a hypothesis which motivates the research.

Note that the goal is not to construct complex models for their own sake. A simple
model is better than a complex one if both achieve the same level of empirical perfor-
mance. An analogy to the world of business may clarify the point. The cost of labor is
a major expense for any business. If the number of employees can be reduced without
harming the performance of the business, then from a purely capitalist perspective, this
should be done in order to increase profits. However, it is obvious that some very large
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companies are also very profitable. The reason is that for certain business tasks large
numbers of employees are necessary.

The “complex world” hypothesis cannot be proved or disproved. However, the
following comments by Vladimir Vapnik may lend it some plausibility:

I believe that something drastic has happened in computer science and
machine learning. Until recently, philosophy was based on the very simple
idea that the world is simple. In machine learning, for the first time, we
have examples where the world is not simple. For example, when we solve
the “forest” problem (which is a low-dimensional problem) and use data
of size 15,000 we get 85%-87% accuracy. However, when we use 500,000
training examples we achieve 98% of correct answers. This means that a
good decision rule is not a simple one, it cannot be described by a very
few parameters. This is actually a crucial point in approach to empirical
inference [Vapnik & Gilad-Bachrach (2008)].

1.5 Organization and Contributions

The theoretical core of the thesis is the PITA algorithm, presented in Chapters 3. This
algorithm is developed in two steps.

The first step, contained in Chapter 2, involves a special kind of model update
based on a PIT value histogram. Section 2.1 introduces the Probability Integral Trans-
form, and Section 2.1.1 explains the relationship to the method of inverse transform
sampling. Sections 2.3 and 2.4 show how the information contained in a histogram of
PIT values can be used to define a simple model update. An expression for the total
codelength savings achieved by the update is obtained.

The development of the PITA algorithm is completed in Chapter 3. Section 3.2
points out the key property of the PIT histogram model update: it can be used to update
an ensemble of models. Section 3.3 introduces the idea of context functions, which are
used to partition the data into subsets. The ensemble of models corresponding to a
given subset can then be updated using the appropriate PIT histogram transformation.
Section 3.4 returns to the twin problems of feature selection and feature combination,
and shows how the PIT histograms can be used to solve these problems. Section 3.5
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discusses the computational costs and memory requirements of the algorithm. The
PITA algorithm is especially well-suited for data sets that are too large to be held in
memory. Section 3.6 demonstrates that the savings achieved by the histogram update
is equal to a special kind of mutual information between the context function and the
encoded data. Section 3.8 shows how the PITA model updates can be layered over
some other type of model, producing a hybrid model with improved performance. The
chapter also discusses several other technical ideas.

A relatively short Chapter 4 discusses alternative model ensemble updates based on
statistics related to PIT values. The alternative updates are based on single-parameter
transformation functions. The key is to find functional forms where the optimal pa-
rameter can be calculated from some easily computed PIT value statistic.

Chapter 5 discusses related work, in particular Maximum Entropy, boosting, good-
ness of fit tests, and other applications of the PIT idea in statistics and machine learn-
ing. Detailed comparisons are made between this previous research and PITA. An
analysis of the situations in which PITA has a strong advantage over previous methods
is also given. The central difference between PITA and other machine learning algo-
rithms is that PITA uses the AIT view of modeling, in which the encoded data plays a
central role.

The remainder of the thesis shows how the PITA algorithm can be applied to the
following tasks:

• Chapter 6: Image compression.

• Chapter 7: Binary pattern classification.

• Chapter 8: Word morphology modeling.

• Chapter 9: Speech modeling.

• Chapter 10: Modeling and recognition of motion capture data.
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Chapter 2

Model Ensemble Update
based on PIT Histogram

This thesis proposes to adopt the AIT view of the modeling problem as illustrated in
the Key Figure 1.1. However, instead of using bit strings, the encoded data will be
represented as PIT values. These are obtained by applying the Probability Integral
Transform to the data set X using the current model Q@. This chapter introduces the
Probability Integral Transform and proposes a method for updating a model ensemble
using information contained in a histogram of PIT values. This method is then used
as part of an algorithm for constructing complex context-conditional models Q(x|c).
This algorithm is called PITA and is discussed in Chapter 3.

2.1 Probability Integral Transform

The Probability Integral Transform is based on the following simple idea. Let P (x)

be the cumulative distribution function (CDF) for some continuous random variable
X: P (x) = Pr(X < x). Now define the random variable φ = P (X). Then φ is
distributed uniformly on the [0, 1] interval [Angus (1994)].

In statistical modeling, the real distribution P (x) is not available. Instead there is an
empirical data set X = {X1, X2 . . . XN}. The goal is to obtain a model Q(x) ≈ P (x)

from analyzing the data set X.
An important question in statistics is how to measure the quality of the approxima-

tion Q ≈ P . Techniques for doing this are called Goodness of Fit tests in the statistics
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literature (see Chapter 5 for a discussion). The Probability Integral Transform provides
another trick for measuring the quality of the model Q. The model Q is used to obtain
PIT values φk = Q(Xk). If Q ≈ P , then the PIT values should be nearly uniformly
distributed on the unit interval. An uneven PIT value distribution implies that Q is a
bad approximation of P .

Notice the similarity between the idea of a uniform distribution of PIT values and
a random bit string. Chapter 1 mentioned that a bit string can be compressed if and
only if it contains a randomness deficiency. Compressing the bit string is equivalent
to improving the model. The same basic idea will hold with a set of PIT values. If a
randomness deficiency is found in the PIT values, it can be used to improve the model.
A key point is that the number of PIT values is always equal to N , the number of data
samples. This means that a one-to-one mapping between PIT values and original data
outcomes can always be maintained, which is not the case for bits. Instead of reducing
the number of PIT values, the modeling process expands the region of the [0, 1] interval
that the PIT values are allowed to occupy.

2.1.1 Inverse Transform Sampling

Another way to understand the PIT concept is through the connection to the idea of
sampling. To sample from a model means to produce a fictional data set that is “typi-
cal” of the model. This can be useful for various reasons. For example, the descriptive
adequacy of a model can be qualitatively assessed by sampling from it and comparing
the sampled data to the real data.

The following two step process, called inverse transform sampling, can be used to
sample from a model [Devroye (1986)]. First a random number generator is invoked
to produce [0, 1] uniform random variables. Then the model’s inverse cumulative dis-
tribution function (CDF) is used to map these numbers to the space of data outcomes.

Consider the following example of sampling from a Gaussian model with param-
eters µ = 50 and σ = 10. Say that the first number produced by the random number
generator is φ = .25. This φ-value implies a sampled data value of about 43.26, be-
cause: ∫ 43.26

−∞
N(50, 10)dx = .25 (2.1)
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The Probability Integral Transform can be thought of as the inverse of this sampling
process. Given a real data set {Xk} and a model Q, the PIT values {φk} are a set
of [0, 1]-distributed numbers that, if emitted by the random number generator, would
produce Xk when sampling from Q:

φk = {φ : Q−1(φ) = Xk} (2.2)

Notice how the PIT value φk depends on both the model Q and the real data out-
comeXk. An issue arises if the data is not continuous. In this case the inverse function
Q−1 is not well-defined: many φ values map to the same outcome X . The simplest
way to solve the problem is to select φ at random on the valid range. Often, the precise
value of φ will not matter, as long it is within the proper range. In other cases, this
becomes an issue called the Bin Overlap problem, discussed in Section 3.11.

2.1.2 Analyzing the PIT values

An analysis of the PIT value distribution can help determine if a model is good, and
provide a way of improve the model if it is imperfect. Suppose a set of data X is
generated by inverse transform sampling. The random number generator produces a
set of uniform [0, 1] values, and these values are mapped to the data space using a
distribution P (x). Since X is generated by sampling from P (x), P (x) is a perfect
model for X. When the Probability Integral Transform φk = P (Xk) is applied, the
resulting PIT values will be exactly the original set of uniform [0, 1] random numbers
given to us by the random number generator. A histogram of φk values will be nearly
flat.

Now imagine that X is generated by using some distribution P (x), but the φk are
calculated using some other (model) distribution Q(x). Assuming the distributions are
significantly different, the resulting PIT histogram will be uneven, because the model
Q(x) has assigned a large probability width to outcomes that occur rarely according to
P (x), and vice versa. The PIT values will be clumped together or skewed to one side
of the unit interval. This skewed PIT histogram indicates a randomness deficiency, just
like an overabundance of 1’s in a bit string. For this reason, the PIT values can play the
same role as the bit strings Si in the Key Figure 1.1. Furthermore, as discussed below,
the PIT histogram contains exactly the information necessary to update the model.
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(a) (b)

(c) (d)

Figure 2.1: Illustration of PIT histogram based reencoding. The original data is shown
in (a). This data is modeled using a Gaussian with the optimal mean and variance,
shown as the green dotted line in (c). Applying the Probability Integral Transform
φk = Q(Xk), where Q(·) is the Gaussian model, yields the PIT histogram (b). This
histogram corresponds to the transformation shown in (d). Using the transformation to
update the original model yields the blue curve in (c), clearly improving the fit.

This idea is illustrated in Figure 2.1. Here we start with a data set that comes from
a Gaussian mixture model with two components (Figure 2.1(a)). Our first attempt
at modeling the data was a single Gaussian, shown as the green dotted line in Fig-
ure 2.1(c). This model is obviously quite imperfect, and this imperfection is illustrated
by the highly uneven PIT histogram (Figure 2.1(b)) obtained using the model. The PIT
histogram CDF transformation, to be discussed below, is shown in Figure 2.1(d). The
effect of this transformation is to expand CDF regions corresponding to histogram bins
with many hits while contracting regions with a small number of hits.
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2.2 Notation

Before proceeding further, it will be useful to define the notation used in this thesis.
Real world distributions are denoted P , while models are denoted Q. The goal of

modeling is to find a good approximation such that Q ≈ P . Of particular interest are
complex conditional distributions Q(x|c) ≈ P (x|c), where c is a context variable that
can take many possible values.

There is a subtle difference between the notation x and X . The lower case x de-
notes an argument to a function such as P (x) or Q(x), while X refers to the actual
outcome of a random variable.

The data set X is a set of N data samples {X1, . . . Xk . . . XN}. A context value
{C1, . . . Ck . . . CN} is associated with each data sample. The concrete definition of
the data samples Xk and contexts Ck depends on the application. Basically, the Xk

are whatever the user is interested in predicting and the Ck are whatever is used to do
the prediction. Some examples are given below. The index k always refers to data set
indices.

The PITA algorithm developed in this thesis operates on an ensemble of models.
Each data outcome has its own model attached to it. The model associated with the kth
data sample is uk(x). This notation can be used to write the total codelength required
to encode the data set X using the model ensemble is:

L = −
N∑
k=1

log2 u
k(Xk)

The individual models are related to the full complex conditional model by the ex-
pression uk(x) = Q(x|Ck). The full conditional distribution Q(x|c) is never explicitly
represented; doing so would be impossible because the space of contexts is assumed
to be vast. Instead, the individual {uk} models for each data point Xk are built and
updated. A set of models {uk} is called a model ensemble. Note that a single uk is just
an array of numbers.

In addition to models and data, it will also be important to refer to histograms,
histogram bin widths, and histogram bin counts. The bin widths of anM -bin histogram
are denoted {e1, . . . ej . . . eM}. The normalized bin heights, which are the number
of samples that fall into a given range divided by the total number of samples, are
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denoted {e′1, . . . e′j . . . e′M}. Note that the bin widths and the normalized bin heights
are conceptually similar to probability distributions. The index j refers to histogram
bins.

A central concept in this thesis is the relationship between probability distribution
functions (PDFs) and cumulative distribution functions (CDFs). The notation µk refers
to the CDF corresponding to uk, while ε and ε′ correspond to e and e′. By convention,
a CDF for an n-outcome variable has n + 1 elements; the first element is 0 and the
last element is 1. By that convention, u(xi) = ui = µi − µi−1, where 1 ≤ i ≤ n.
Also, it will sometimes be convenient to refer to the upper and lower CDF bound-
aries for a given data outcome. Thus µ+(xi) = µi and µ−(xi) = µi−1. The region
[µ−(xi), µ+(xi)] ∈ [0, 1] is often called the “CDF outcome window” or “CDF win-
dow” corresponding to an outcome xi. Using this notation the empirical codelength
can be written as:

L = −
N∑
k=1

log2(µk+(Xk)− µk−(Xk))

As discussed below, the PIT values φk are chosen such that:

µk−(Xk) < φk < µk+(Xk)

Note the dependence of the PIT value φk on both the real data outcome Xk and the
kth model µk.

Another notational convention is to use calligraphic letters to denote sets. Thus X
refers to the data set, C refers to the set of contexts, and U refers to the set of models.
The battery of context functions used to search for randomness deficiencies is denoted
W.

2.2.1 Example Xk and Ck Definitions

To give a more concrete understanding of the meaning of the notation Xk and Ck,
some examples of what these variables mean in various applications are now provided.

• Image Compression. The Xk is a single pixel value, and Ck is the history of
previously sent pixels.
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2.3 Histogram CDF Remapping Transformation

• Pattern Recognition. The Xk is the label or category of the pattern, and Ck is
the pattern itself. For example in the face detection problem, Xk is a binary label
that indicates “face” or “non-face”, while Ck is the associated image.

• Time Series Modeling. The Xk is each new observation, and Ck is the his-
tory of previous observations. This formulation is used for the speech modeling
(Chapter 9) and motion recognition (Chapter 10) applications discussed below.

In the work described in this thesis, the Xk data is assumed to be single dimen-
sional. While this is not strictly necessary from a theoretical standpoint, for technical
reasons related to the construction of CDFs, it is much easier to handle single dimen-
sional data. This restriction is not particularly problematic, because the chain rule of
probability can be used to rewrite joint distributions as conditional distributions. For
example, a five dimensional joint distribution p(x1, x2, x3, x4, x5) can be constructed
from a series of conditional distributions:

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x2, x1)p(x4|x3, x2, x1)p(x5|x4, x3, x2, x1)

The PITA algorithm can then be used to model the conditional distributions. In
the time series modeling applications of Chapters 9 and 10, each new data observation
arrives in the form of aD-dimensional vector. In those chapters, the solution is to build
D separate models, one for each dimension.

It is worth noting that there are two ways of looking at the problem of modeling an
image. Consider a single image with D = 400, 000 pixels. One way of looking at the
image is as a single data sample in aD-dimensional space. Alternatively, the image can
be thought of as a data set with D samples {X,C}, where the context corresponding
to each outcome is the history of previous pixels. This thesis uses the second view.

2.3 Histogram CDF Remapping Transformation

The transformation illustrated in Figure 2.1(d) can be formalized as follows. Let {µ0 =

0, µ1, µ2, . . . µn = 1} be a CDF for a discrete random variable with n outcomes. Given
a set of histogram bin widths {ej} corresponding to a CDF {ε0, ε1, ε2, . . . εM} and
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2.4 PIT Histogram Update

normalized bin heights {e′j} corresponding to a CDF {ε′0, ε′1, ε′2, . . . ε′M}, the histogram
based CDF remapping transformation is given by:

j(i) = {j : εj−1 ≤ µi < εj}

µi = εj(i)−1 + β(εj(i) − εj(i)−1) (2.3)

µ′i = ε′j(i)−1 + β(ε′j(i) − ε′j(i)−1) (2.4)

Thus Equation 2.3 determines the value of β ∈ [0, 1], and this value is then used
to calculate µ′i. This transformation is illustrated in Figure 2.2. Note that if the CDF
window of a data outcome x is contained entirely within one of the histogram bins so
that εj−1 ≤ µ−(x) < µ+(x) ≤ εj , then the total change in the probability of x can be
expressed simply:

u′(x) =
e′j
ej
u(x) (2.5)

In other words the probability is simply scaled by the same factor as the histogram
bin containing the CDF outcome window. For an outcome window that spans a his-
togram bin boundary, the update will be more complex, but the resulting probability
can still be bounded. Consider a CDF outcome that spans a single histogram bin parti-
tion:

εj−1 < µ−(x) < εj < µ+(x) < εj+1

Assume for simplicity that e′j/ej < e′j+1/ej+1. Then the updated probability will
be within an interval:

e′j
ej
≤ u′(x)

u(x)
≤
e′j+1

ej+1

2.4 PIT Histogram Update

Consider a dataset X = {X1, X2, . . . Xk, . . . XN}. Assume that every data point has a
model U= {u1, u2, . . . uk, . . . uN} associated with it. For every data sample, we select
a PIT value φk such that:
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2.4 PIT Histogram Update

µk−(Xk) ≤ φk < µk+(Xk) (2.6)

For the time being we are not concerned with the specific value of φk, as long as
it is within the required range. A set of histogram bin widths {ej} is chosen (almost
always uniform), and the number of PIT values falling in each bin is counted. This
results in a set of histogram counts Nj . The normalized bin heights are {ej} = N ′j/N .
The CDF remapping transformation of the previous section is then used to update the
model ensemble {uk}, using the bin widths {ej} as the source distribution and the
bin heights {e′j} as the target distribution. A crucial assumption allows the codelength
savings achieved by this model ensemble update to be predicted exactly.

Theorem. Consider a data set {Xk} with associated models {uk}, and a set of
histogram bin widths {ej} corresponding to {εj}. Assume that for all k, there is some
j(k) such that:

εj(k)−1 ≤ µk−(Xk) < µk+(Xk) < εj(k) (2.7)

Then if the normalized bin heights are given by {e′j} (corresponding to {ε′j}), the
average per-sample codelength savings resulting from updating all of the models uk us-
ing the histogram update indicated by e, e′ is the Kullback-Liebler divergenceD(e′||e).

Proof. Because of the assumption expressed by Equation 2.7, the simple update rule
of Equation 2.5 can be used. The updated probabilities are given by:

u′k(Xk) = uk(Xk)
e′j(k)

ej(k)

The before (L) and after (L′) code lengths are given by:

L = −
N∑
k=1

log uk(Xk)

L′ = −
N∑
k=1

log uk(Xk)−
N∑
k=1

log
e′j(k)

ej(k)

Thus the total savings is given by:
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2.4 PIT Histogram Update

L− L′ =
N∑
k=1

log
e′j(k)

ej(k)

(2.8)

=
∑
j

log
e′j
ej

∑
k′:j(k′)=j

1 (2.9)

= N
∑
j

e′j log
e′j
ej

(2.10)

This is N times the Kullback-Liebler divergence between {ej} and {e′j}.

The notationally difficult step in this derivation is the transition from Equation 2.8 -
2.9. Since all outcomes that are assigned to the same bin get the same factor, we
can rewrite the sum as first going over all bins (j-index) and then over all outcomes
assigned to a given bin (k′-index). The step 2.9 - 2.10 is justified by the fact that the
number of outcomes assigned to a bucket is exactly N times the normalized bucket
height e′j .

The CDF remapping update changes the model probability uk(x) of all the possible
values that the kth outcome could take. However, the codelength depends on only the
outcome Xk that actually occurred, so the derivation refers to values uk(Xk). The bin
containment assumption (Equation 2.7) is only necessary for these outcomes. Note that
the bin containment assumption means that as long as φk falls within the appropriate
range, the exact method used to choose it does not affect the histogram counts, and is
thus unimportant.

It is worthwhile to interpret this theorem in terms of the idea of randomness de-
ficiencies. Clearly, if the histogram is flat then the savings will be nearly zero; if it
is uneven, substantial savings can be achieved by applying the update. An uneven
PIT histogram corresponds to a randomness deficiency, and the larger the randomness
deficiency, the more codelength savings can be achieved by applying the update.

A key fact about the above process is that it makes no assumptions regarding the
type of data or how the models {uk} were obtained. It may be that all these models are
the same, but this is not required. In fact, it is not even required that the samples repre-
sent the same type of data or have the same number of potential values. It is acceptable
for one third of the data pool to represent a set of height and weight measurements for
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2.4 PIT Histogram Update

Central Asian populations, while another third represents the stock price movements
on the New York Stock Exchange, and another third contains measurements relating
to the number of cosmic rays entering the Earth’s atmosphere on a given day. It may
be difficult to find a randomness deficiency in such an odd dataset, but if one is found,
then it can be used to update the entire model ensemble, and doing so will achieve the
average savings indicated by the KLD histogram score.

The above result may seem at first glance to be an obvious corollary of the defi-
nition of the Kullback-Leibler divergence, which is the code length penalty paid for
using a model Q to encode a data source distributed according to some other distribu-
tion P . What makes it different is the fact that here we are updating an ensemble of
models. There is no single source model or source distribution: each data sample Xk

is encoded with its own model uk. The savings achieved is a result of simultaneously
updating N distinct models, improving the overall fit to a set of N data points.
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2.4 PIT Histogram Update

Figure 2.2: Illustration of the updating process applied to a single model CDF point
µi. The ε and ε′ points come from the information in the PIT histogram. Note that
in general there can be many more µ points than ε points: 10,000 µ points can be
remapped using 10 ε points.
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Chapter 3

PIT Analysis Algorithm

This chapter presents the core idea of the thesis, the Probability Integral Transform
value Analysis (PITA) algorithm. The algorithm uses the model update method of
Chapter 2, in combination with a set of context functions (or features) to construct
complex context-dependent models Q(x|c). These kinds of models are quite general
and can be used in many different applications. A pseudocode version of PITA is
shown in Algorithm 1.

A rough explanation of the algorithm is as follows. The algorithm maintains an
individual model distribution uk for each data sample Xk. These distributions can be
initialized as uniform, or they can be obtained from some other modeling process. At
the beginning of the algorithm, PIT values {φk} are obtained from {uk}and {Xk} us-
ing the Probability Integral Transform. The algorithm then proceeds through a series
of learning rounds. In each round, the battery of binary context functions W is applied
to the stream of PIT values. Each context function splits the data into two subsets, from
which two histograms H0, H1 are constructed. The context functions are then scored
by taking the weighted sum of the two histogram KLD scores. The context function
w∗ with the highest score is used to update the models and PIT values, and then a new
round begins. These points are explained in greater detail below.

3.1 Data Transmission Thought Experiment

One of the key points about the PITA algorithm, that distinguishes it from other tech-
niques in machine learning, is that it deals with an ensemble of models {uk}. The goal
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3.1 Data Transmission Thought Experiment

Algorithm 1 Abstract PITA algorithm.
given data samples X = {Xk}, associated contexts C = {Ck},
context functions W.
initialize models U = {uk}
Φ = {φk} = U→ ProbIntTrans(X)

for t = 1 : T do
for w ∈W do

Φ0 = {φk : w(Ck) = 0}, H0 = histogram(Φ0)

Φ1 = {φk : w(Ck) = 1}, H1 = histogram(Φ1)

score(w) = |Φ0| ·KLD(H0) + |Φ1| ·KLD(H1)

end for
let {w∗t , H∗0,t, H∗1,t} be the best context function, histogram
for all k do

if w∗t (Ck) = 1 then
uk := H∗1,t → cdf-remap(uk) // Update shown in Figure 2.2
φk := H∗1,t → cdf-remap(φk)

else
uk := H∗0,t → cdf-remap(uk)
φk := H∗0,t → cdf-remap(φk)

end if
end for

end for
output final distributions uk, optimal tests w∗t ,
transformation parameters H∗0,t, H

∗
1,t

of PITA is to improve this model ensemble by applying a series of simple updates.
It is worth reflecting on the meaning of the word “simple”, which is of fundamental
importance in statistics. The following thought experiment is an attempt to explain the
PITA algorithm and the role of the word “simple” in it.

There is a data set {Xk}, which a sender wishes to transmit to a receiver. Both par-
ties are assumed to start with an identical set of initial models {uk}(in the simplest case,
these are just uniform models). Because both the sender and the receiver have the same
{uk}, the sender can encode each sampleXk using the associated model uk, and the re-
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3.2 Model Ensemble Updates

ceiver can decode it correctly. Initially, the cost of transmission is
∑

k− log2 u
k(Xk).

Now, assume that the sender and receiver have agreed upon some protocol that
allows them to update the models {uk}. If the sender realizes that some update to the
ensemble will produce a shorter codelength, then he encodes the update and sends it
to the receiver. Then both sides perform identical model updates, ensuring that the
models remain synchronized. The goal is to produce the shortest net codes, taking into
account both the model update cost and the data encoding cost. Thus, the meaning of
“simple” is that the update can be encoded with a short code. This idea is called the
MDL Principle [Rissanen (1978)].

Consider what happens if we do not account for the model update costs in the data
transmission problem. Then the sender can trivially reduce the codelength to zero,
by updating individual models into delta functions. In other words, the sender simply
sends a series of updates that turns each uk(x) into δ(x,Xk). These δ-function models
then allow the data to be sent at zero cost.

This trivial scheme no longer works if the cost of the updates is accounted for, since
explicit updates to specific models requires a large codelength. Instead, it is necessary
to find more efficient updates. For example, the sender might notice that the outcomes
Xk with even k indices tend to be very small. He can therefore apply a simple update
to all the {uk}with even k indices that shifts probability away from the large outcomes
and towards the small outcomes. This update can be specified with a short code, but if
the number of samples N is large, it can achieve a substantial net savings.

3.2 Model Ensemble Updates

A method of reasoning about model ensembles is necessary to implement the above
data transmission scheme. This is not trivial, because it is not enough to make observa-
tions about the data {Xk}alone. For example, it is not useful to merely observe that the
Xk corresponding to k ∈ {450, 574} are all distributed within a narrow region, if the
models uk for k ∈ {450, 574} already assign high probability to that region. Instead,
it is necessary to find some way in which the models are systematically miscalibrated.

Furthermore, it is not immediately obvious how to implement the model ensemble
update. One simple option would be to apply a multiplicative factor α to some range
of values. For example, one could update u′(x) = αu(x) for x ∈ {0, 5}. The problem
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with this is that the new distribution will have to be renormalized immediately after the
update. The actual change in probability of an outcome x ∈ {0, 5} will not be α, but
some other value that depends on the probability assigned by the model to other values
x /∈ {0, 5}. This makes it very difficult to predict the actual change in net codelength.

Solving these problems is, of course, the whole reason why the PIT histogram
transformation was introduced in Chapter 2. The PIT value φk is determined by Xk

and µk as follows:

µk−(Xk) ≤ φk < µk+(Xk) (3.1)

Because the PIT value depends on both the data pointXk and the model uk, the PIT
histogram allows us to visualize and quantify the extent to which the ensemble of mod-
els {uk} fits the data {Xk}. Furthermore, the histogram KLD score of Equation 2.10
can be used to predict the codelength savings that will be achieved by applying the
update.

So, in the terms of the data transmission example, the first step is for the sender
to calculate the PIT histogram for the entire data set. If this histogram is substantially
uneven, then the sender sends the histogram to the receiver, and both parties update all
the models uk using the histogram CDF update.

Now, this updating process can be repeated a couple of times, but there is a limit to
how much can be gained, for the following reason. When the PIT histogram transfor-
mation is used to update an ensemble of models, the corresponding PIT values must
be updated as well. The new PIT values φk′ must be chosen such that Equation 3.1
is satisfied, using the new models µk′ . In fact, the exact same method (Equation 2.4,
Figure 2.2) for updating the model CDF points µk can also be used to update the PIT
values φk.

Upon reflection, the following fact becomes obvious: the new PIT histograms cor-
responding to the updated φk′ will be more flat than the previous PIT histograms. This
is because the effect of the model update is to expand regions with many PIT outcomes
and to contract regions with few outcomes. This flattening effect is exactly analogous
to the randomization process in the AIT view of modeling (Key Figure 1.1).

Recall that the savings that can be achieved by the model update depends on the
degree of unevenness of the PIT histogram. Thus, as the histograms become more
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and more flat, the savings produced by the model ensemble update gets smaller and
smaller. Context functions can be used to circumvent this problem.

3.3 Contexts and Context Functions

In Chapter 1 we noted that the frequency of 1s in a random bit string must be about
50%. This is not the only condition that a random bit string must satisfy. In fact, a
truly random string must satisfy an enormous number of conditions:

• The frequency of 1s is about 50%.

• The frequency of 1s after the prefix “0010” (or any other prefix) is about 50%.

• The frequency of 1s in positions indexed by square numbers (1, 4, 9, 16, . . . ) is
about 50%.

• ... and many other conditions.

A flat PIT histogram is analogous to a bit string in which the frequency of 1s is
about 50%. Just as with a bit string, there are many other conditions that the PIT value
sequence must satisfy in order to be truly random. For the sequence to be random, it is
necessary for any subset1 of the PIT outcomes to produce a flat histogram. Thus, using
the pixel modeling example:

• The histogram of all PIT values must be nearly flat.

• The histogram of PIT values corresponding to pixels in the red color channel
must be nearly flat.

• The histogram of PIT values corresponding to pixels where the previous pixel is
< 50 must be nearly flat.

• ... and many other conditions.

1 More precisely: any simply-definable subset.
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The subsets can be defined using the notion of a context. The context Ck is a
package of data that is “attached” to the data sampleXk. The concrete definition of the
context depends on the application. In a time series modeling application, the context is
just the history of previous observations. In a pattern recognition problem, the context
is the pattern. Note that, in terms of the data transmission example, the receiver must
already have the contexts Ck, or be able to construct the contexts from the previously
sent Xk data (e.g., context Ck may just be the outcomes Xk−1, Xk−2, . . .).

In general, the size of the context outcome space is far too large to be conditioned
upon directly. Instead, a set of context functions or features W is used. Typically these
will be simple binary functions w(c) ∈ {0, 1}, but it is easy to generalize to the case
of multiple discrete outcomes. Another way of thinking of a binary context function is
as a way of splitting the full data set into two subsets:

S0 = {k : w(Ck) = 0}

S1 = {k : w(Ck) = 1}

After applying the PIT histogram update to the full data set a few times, the full PIT
distribution becomes flat. However, it may very well be that a subset of the PIT values
will still have an uneven histogram. If such a subset can be found, then an additional
codelength savings can be achieved by applying the CDF update transformation to it.
This idea is illustrated in Figure 3.1.

Thus, the full PITA algorithm can be explained in terms of the data transmission
example as follows. The models {uk}are initialized according to some predefined pro-
tocol, and the PIT values {φk}are calculated based on {uk}and {Xk}. Then the sender
searches the PIT value distribution for randomness deficiencies, by using a battery of
context functions W. In each round, the context function w∗t that reveals the largest
randomness deficiency, and thus can be used to achieve the largest codelength sav-
ings, is selected. The sender transmits the index of w∗t in W, as well as the histograms
H∗t,0, H

∗
t,1 associated with the context function. The receiver now has all the neces-

sary information to update the model ensemble, so both parties perform the identical
update, ensuring that the models remain synchronized. Then another round begins.
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Figure 3.1: Illustration of repeated applications of the histogram update method. The
histogram in the upper left shows the full subset of PIT values from a dataset corre-
sponding to the pixels of an image. The lower left shows the new PIT distribution
that is produced by updating the models using the histogram in the upper left. This
distribution is then split into subsets A and B, correspoding to outcomes where the
previous pixel is less than 50 (A) or greater than 50 (B). This split reveals a substantial
randomness deficiency. Both subsets are then updated, producing new, more random
PIT distributions as shown in the lower center and lower right.
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3.4 Feature Selection and Combination

The discussions contained in Sections 1.3.3 and 1.3.4 emphasized that any feature-
based modeling scheme must solve the related problems of feature combination and
feature selection1. Given a set of statistics relating to feature W1, and another set of
statistics relating to feature W2, how can these features be combined together to obtain
an aggregate model Q(x|W1(c),W2(c))? And how can the best features be selected
from a large package (say, |W| = 106)?

The ability of the PIT histogram update to be used on an ensemble of models means
that it can be used to solve the feature combination problem. In the first round, the first
feature W1 is used to split the data into subsets. Then the subsets are updated using
the PIT histogram method. The model is now of the form Q(x|W1(c)). In the next
step, a new feature W2 is used to split the data into two subsets, and those subsets are
again updated. The model is now of the form Q(x|W1(c),W2(c)). Notice how the W2

step does not “overwrite” the information already built into the model using W1. This
can be seen by observing that the model update is guaranteed to produce codelength
savings, assuming the key assumption is met. This would not be true if the W2 step
“overwrote” the information from W1.

To solve the feature selection problem, it is necessary to find a way to score fea-
tures. The histogram KLD score provides a natural way of doing this. The score of a
feature is simply the weighted sum of the histogram KLD scores for the subsets defined
by the feature:

|S0| ·KLD(S0) + |S1| ·KLD(S1) (3.2)

As noted in Chapter 1, a “smart” feature selection score must be a function F =

F (W,Q@,X) where Q@ is the current model. A score of the form F = F (W,X) is
insufficient, because this form cannot express how much improvement is achieved by
using a feature W . The above scoring expression is of the form F = F (W,Φ). Since
the PIT values depend on the model and the data, Φ = Φ(Q@,X), this score is of the
correct form.

1 Note: in this thesis the word “feature” means the same as “context function”.
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Chapter 1 mentioned an example problem relating to the prediction of an election.
This problem involved three features W1,W2,W3 relating to economic growth, unem-
ployment, and political scandals. In this example W1 and W2 had stronger predictive
power than W3, but W1 and W2 were also very similar to one another (since economic
growth and unemployment are strongly linked). Therefore, a smart feature selection
method would choose W1 in the first round, but choose W3 in the second round, since
W2 adds very little that is not already contained in W1.

In PITA, this is achieved as follows. In the first round, W1 reveals the largest
randomness deficiency, so it is selected. Then the models are updated using W1, and
new PIT values are calculated. Now, the new histograms corresponding to W1 will be
nearly flat. Since W2 is very similar to W1, the W2 histograms will also be nearly flat,
so W2 will get a low score in the second round. On the other hand, W3 will still have
an uneven histogram, because it is not related to W1. This means it will get a good
score in the second round and be chosen.

The PIT histogram idea is very simple, and yet it allows us to solve the hard prob-
lems of feature combination and selection. The reason is that the statistics used are
related to the encoded data, not the original data. Thus, two problems that are difficult
in the traditional view of statistics become easy in the AIT view.

3.5 Computation and Memory Costs

The main computational cost of the PITA algorithm comes from the logging for-loop
of Algorithm 1. This loop requires each context fucntion w ∈ W to be applied to
each data sample, resulting in a computational complexity of O(N |W|) per round. For
T rounds, the complexity is O(TN |W|). Note that while this can be large, it is still
linear in N . Compared to the logging step, the model update step is very fast (it is
only O(N)). Therefore, if the computational cost of the algorithm is a problem, most
attention should be paid to optimizing the logging step. Methods for doing this tend to
be technical and application-dependent, so the issue is not pursued further here.

An important potential application of PITA is to very large datasets. Of particular
interest are datasets so large that they cannot fit in memory. To process such datasets,
batches of data must be read in one by one. After reading a data batch and performing
some computations on it, memory must be cleared to make room for the next batch.
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This mode of operation is quite constraining. Many algorithms need to refer to each
data point repeatedly during the learning process. For example, both the backpropa-
gation algorithm associated with the Multi-Layer Perceptron [Rumelhart et al. (1986)]
and the Generalized Iterative Scaling algorithm associated with Maximum Entropy
models [Darroch & Ratcliff (1972)] require a sum over the entire data set to make
small, gradient-descent style parameter updates λt+1 = λt + ∆λ. Since the parameter
updates tend to be small, these algorithms require many database traversals, incurring
a disastrous computational cost if the data set is very large.

The PITA algorithm is well-suited for the large data set mode. In each PITA round,
the PIT value associated with a data outcome is logged in the histograms attached to
each context function. After this is done, the data sample is not used again until the
next round, and its memory can be cleared. This technique requires a slight refinement
of the logging step shown in the schematic outline of Algorithm 1. This modification,
shown in Algorithm 2, is used to generate the histograms H0 and H1 associated with
each context function. By using this logging technique, we ensure that each PITA
round requires only one traversal of the data set.

Algorithm 2 Refined version of logging for loop.
for k = 1 : N do

for w ∈W do
if w(Ck) = 1 then
Hw

1 → log-hist-count(φk)
else
Hw

0 → log-hist-count(φk)
end if

end for
end for

Since this modified logging scheme use a separate set of statistics for each w, and
in principle |W| is large, it may appear at first glance to require a lot of memory.
Actually the memory requirements are not that large. An important property of the
PIT histogram model updates and the associated feature scoring scheme is that they
depend a very small number of statistics: the histogram bin counts [Hw

0 , H
w
1 ]. All the

information necessary to score the features and perform the model ensemble update
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is contained in the [Hw
0 , H

w
1 ] statistics. Because of this the memory requirement for

logging is only O(B|W|), where B is the number of histogram bins used (a typical
value for B is 10). Note that the memory requirement does not depend on N .

In Chapter 4 we discuss a set of alternative model updates and associated scor-
ing methods. These updates depend on only one logged statistic per feature, giving
memory requirements of O(|W|).

3.6 Mutual Information Analysis

It is possible to interpret the histogram KLD score in terms of the mutual information
between two special kinds of random variables. Let there be a dataset {Xk}with mod-
els {uk}and contexts {Ck}, and let {φk} be the PIT values. There is a context func-
tion w(c) ∈ {1, 2, . . . d, . . .} which partitions the data into subsets {S1, S2 . . . Sd . . .}.
There is also a set of histogram bin boundaries {ε0 = 0, ε1, . . . εJ = 1}.

Let κ ∈ [1, . . . N ] be a data sample index selected uniformly at random. Let D and
A be random variables whose outcomes are related to the choice of κ as follows:

D = w(Cκ)

V = {v : εv−1 ≤ φκ < εv}

Using these definitions the following theorem holds.
Theorem. Assume the φk variables are uniformly distributed in aggregate, so that

p(A = a) = ea. Then the average per-sample savings achievable by applying the
PIT histogram transformation to each of the data subsets Sd is equal to the mutual
information I(A,D).

Proof. The entropy of A is:

H(A) = −
∑
a

p(a) log p(a)

= −
∑
d

p(d)
∑
a

p(a|d) log p(a)

While the conditional entropy of A given D is:
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H(A|D) = −
∑
a

∑
d

p(a, d) log p(a|d)

= −
∑
d

p(d)
∑
a

p(a|d) log p(a|d)

The mutual information I(A,D) is related to the entropyH(A) and the conditional
entropy H(A|D) as follows:

I(A,D) = H(A)−H(A|D)

= −
∑
d

p(d)
∑
a

p(a|d)
[

log p(a)− log p(a|d)
]

=
∑
d

p(d)
∑
a

p(a|d) log
p(a|d)

p(a)

The result can be achieved simply by identifying the histogram related quantities
with the quantities in the above formula. The probability p(a|d) is the empirical prob-
ability that a sample falls into the ath histogram bin partition, given that the context
function assigned it to subset Sd. So it is just the normalized histogram bin height e′a,d
for one of the data partitions Sd. The term p(a) is the aggregate probability that a sam-
ple (in any partition) will fall into a given histogram bin; by assumption this is equal
to ea. Since we use the same histogram bin widths ea for all partitions Sd, ea = ea,d.
Finally the term p(d) = Nd/N is just the size of a given partition divided by the total
number of samples. Putting these together, we obtain:

I(A,D) =
1

N

∑
d

Nd

∑
a

e′a,d log
e′a,d
ea,d

This expression is just the weighted sum of the histogram KLD scores Equa-
tion 2.10 for each subset Sd.

3.7 PIT Analysis for Sequential Data Modeling

Sequential data modeling is the problem of predicting a symbol from the symbols that
have preceded it. This can be formalized as finding a probability distribution p(x|H)
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where x is the next symbol to arrive, and H is the history of symbols. The formulation
is quite general, since any multivariate distribution can be rewritten as a product of
conditional distributions using the chain rule of probability:

p(X1, X2, X3 . . . XN) = p(XN |X1, X2 . . .)p(X1, X2 . . .)

=
N∏
i=1

p(Xi|X1 . . . Xi−1)

=
N∏
i=1

p(Xi|Hi)

By identifying the histories Hi with the contexts Ck, the PITA algorithm can be
used to attack this problem. The above formulation is common to a wide variety of
applications, including data compression, time series analysis, and natural language
processing.

3.8 Layering Models

One of the main strengths of the PIT analysis idea is that it makes no assumptions
about the nature of the model ensemble {uk}. The method used to construct these
models is irrelevant. In particular, the initial models can be obtained as the output of
some other modeling method, such as a neural network or a Hidden Markov Model.
Any randomness deficiencies detected by the algorithm will allow improved models to
be obtained.

One simple example of how initial models can be used arises in statistical natu-
ral language processing (SNLP). In SNLP research one typically has a corpus of text
available to use for training. A standard task is to predict the next word in a sentence
based on the previous words. An obvious first step is to use the corpus to construct
N -gram models, the simplest example of which is the bigram. Bigram conditional
probability distributions are obtained by simple counting:

p(Xt+1 = Vi|Xt = Vj) =
Ni→j

Ni
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Where Vi, Vj are words, Ni is the number of times Vi is observed in the data set,
and Ni→j is the number times the word Vj followed Vi in the data set. These bigram
distributions can then be used as the initial models in the PITA algorithm. This requires
no modifications to PITA. The idea of layering is illustrated conceptually in Figure 3.2.

If the context functions W detect substantial randomness deficiencies in the PIT
stream {φk} generated using the data and the initial models, then the updated models
produced by PITA will be better than the previous models in terms of codelength. Of
course, there is no guarantee that the W will reveal any randomness deficiencies. The
success or failure depends on the choice of W, and on whether the initial model is
a good description of the data. If the initial model is perfect or nearly so, it will be
impossible to detect any randomness deficiencies.

Applying PITA as a follow up to any other initial modeling process is therefore
something of a “win-win” proposition. If no randomness deficiencies are found, then
the initial model is confirmed to be very good. On the other hand, if randomness
deficiencies are detected, an updated model ensemble can be obtained that gives better
performance than the intial model.

One potential pitfall here is overfitting. If the PITA model updates do not pro-
vide significant performance improvement relative to their complexity, overfitting may
result. However, a simple modification to the PITA algorithm can be used to avoid
overfitting: terminate the algorithm when the codelength improvement per round falls
below a certain threshold. The threshold can be determined using the MDL princi-
ple [Rissanen (1978)] by counting the number of bits required to encode a context
function and its parameters. PITA’s ability to adaptively select the model complex-
ity is a strong advantage compared to many other methods in machine learning such
as Artificial Neural Networks or Hidden Markov Models. In these latter methods the
model complexity depends on various parameters that must be selected by the user:
the number of nodes in the neural network or the number of hidden states in the HMM.
The standard training algorithms associated with these models do not provide easy
mechanisms to adaptively select the model complexity.

A more involved example of PITA’s layering ability is given in Appendix C. The
“black box” model used in this example is a Markov Random Field.
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3.8 Layering Models

Figure 3.2: Modified version of the AIT view of modeling, in which the initial models
are obtained by some “black box” modeling algorithm. Once the black box models are
used to obtain the initial set of {uk}, the PITA algorithm proceeds exactly as before. If
substantial randomness deficiencies are found in the encoded data then updated models
will be a significant improvement over the original black box models.
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3.9 CDF Reordering

3.9 CDF Reordering

The PITA algorithm is based completely on the use of model CDFs. The cumulative
distribution function {µi} associated with a discrete probability distribution {ui} is
defined as:

µ(xn) =
n∑
i=1

u(xi)

One could also define the CDF in terms of the recursion relation:

µ0 = 0

µi = ui + µi−1

Either way, it is clear that the CDF implicitly requires an ordering of the outcomes
xi, and that many different CDFs {µi} can be obtained from the same PDF {ui} by
changing the order of the xi. In cases where the variable is a discretized version of a
numeric outcome, then there is a natural ordering (e.g., xi < xi+1). If there is no such
natural ordering, however, then the success or failure of the PIT analysis will be highly
dependent on the choice of ordering used.

Consider the following example, which arises in the word morphology application
described in Chapter 8. There is a context function w(c) that fires when the previous
two letters observed are “gr”. The outcomes that occur after this function fires will
almost always be vowels. However, a PIT histogram built using a typical alphabetic
CDF ordering of the letters (such that x1 = “a”, x2 = “b” . . .x26 = “z”) will probably
fail to reveal a randomness deficiency, or show only a weak one. This is because in
the standard ordering, the vowels are scattered throughout the sequence. If a different
ordering was used in which all the vowels were grouped together at the beginning of
the sequence, a much larger randomness deficiency would be revealed. This idea is
illustrated in Figure 3.3.

In fact, there is no reason why we cannot use different variable orderings to con-
struct the CDFs, as long as we are consistent. To do this, we construct “extended”
context functions w′ = {w,O} where w = w(c) is a standard context function, and
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O = {o1, o2 . . . on} is an outcome ordering. The CDF corresponding toO is calculated
as:

µi =
n∑
i=1

u(xoi)

When logging PIT values for w′, new PIT values are obtained based on the new
CDF ordered using O. These new values are then used to construct the histogram
associated with the extended context function w′.

To update the model ensemble using a context function with a variable ordering O,
a three-stage process is applied. First the CDF corresponding to the given ordering is
obtained from the model PDF {ui}, then the PIT histogram remapping is applied in
the CDF space, and then we transform back to obtain a new PDF {u′i}.

3.10 Variable Width Histograms for Model Updates

In general, the number of bins J and the the histogram bin widths ej to use in the
logging process are design parameters of the PITA algorithm. Typically the histogram
bin widths are chosen to be uniform so that ej = J−1 for all j. However in some cases
it is worthwhile to consider using non-uniform bin widths.

To see why, note that it is possible for a PIT histogram to be completely flat, even if
the PIT values have a very strong randomness deficiency. For example, consider a PIT
distribution where 49% of the values lie in the [0, 1/4] range, 49% lie in the [3/4, 1]

range, and 1% lie in both the [1/4, 1/2] and the [1/2, 3/4] ranges. If this distribution is
viewed with an evenly spaced 4-bin histogram, a savings of .86 bits per outcome can be
achieved. However, if viewed using a standard 2-bin histogram, then the distribution
will appear to be completely flat.

The naı̈ve response to this problem is to use a histogram with a very large number of
bins. There are several reasons why this is not an optimal solution. First, it increases
the amount of memory required in the logging phase. Second, using CDF updates
based on large histograms increases the complexity of the model, making it less likely
to generalize well. Finally, if the histogram has many bins, then the bins must be very
thin, which means that the Bin Overlap problem discussed in Section 3.11 will become
more severe.
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A general principle of the PITA algorithm is to log many different statistics, but to
only use one set of statistics to actually do model updates. For example, in Algorithm 1,
histogram counts Hw

0,1 are logged for many different context functions, but only the
counts corresponding to the best context function H∗0,1 are used to update the models.
This “log many, use one” strategy allows us to achieve the maximum performance
benefit for the minimum increase in model complexity.

This strategy can be extended to the choice of histogram bin widths as follows.
During the logging step, PIT histograms are constructed with many bins (say, 100).
However, these large histograms are not used to perform model updates. Instead, they
are collapsed into a smaller histogram with variable width bins. For example, a 100
bin histogram with uniform bin widths could be collapsed into a 2-bin histogram with
bin widths {e1 = .35, e2 = .65}. When collapsing a histogram to 2-bins, the optimal
bin width can be found simply by recalculating the histogram KLD score for each
candidate width. Note that when collapsing a 100-bin histogram into a 2-bin histogram,
there are only 99 possible choices for the bin width; the single bin edge in the collapsed
2-bin histogram must correspond to one of the bin boundaries in the original 100-bin
histogram.

Using a smaller, variable width histogram for the model update reduces the com-
plexity of the resulting model. A variable-width 2-bin histogram model update is more
complex than a fixed-width 2-bin histogram update, but less complex than a 100-bin
histogram update. A fixed width 2-bin histogram update requires only one parame-
ter: the expansion factor of one bin (the expansion of the other bin is determined by
the normalization requirement). A variable width 2-bin histogram requires two pa-
rameters: a width and an expansion factor. A 100-bin histogram update requires 99
parameters. Thus, the variable-width 2-bin histogram is simple, but has an enhanced
ability to detect randomness deficiencies.

3.11 Bin Overlap Problem

The main problem with the model update method of Chapter 2 is the crucial “bin
containment” assumption that each CDF window would fit cleanly into a histogram
bin:
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Figure 3.3: Illustration of CDF reordering idea. The data in both histograms are PIT
values that follow the prefix “gr”. In (a), the default CDF ordering is used. In (b),
a new ordering is used, in which the vowels (“aeiou”) are placed ahead of the other
letters. This reveals a much stronger randomness deficiency than is possible with the
default ordering.

εj(k)−1 ≤ µk−(Xk) < µk+(Xk) < εj(k)

In other words, the CDF window corresponding to the outcome Xk is completely
contained by the jth histogram bin for some choice of j. Because of this assumption,
we were able to find the exact codelength savings that would result from a CDF remap-
ping update specified by a PIT histogram. The assumption does not hold in general,
and so the codelength savings formula (Equation 2.10) will not be precise. The prob-
lem is that the CDF remapping transformation will differentially expand or compress a
CDF outcome window that spans a histogram bin boundary. This differential updating
makes it impossible to calculate the codelength savings directly from the histogram.
We call this the “Bin Overlap” problem.

A partial solution to the Bin Overlap problem is presented in Section 3.11.1 below.
Before doing so, it is worth analyzing the conditions under which the problem will
occur, and why it is a problem.

The Bin Overlap problem occurs primarily when the models assign large proba-
bilities to data outcomes Xk, corresponding to wide CDF windows [µ−, µ+]. If the
CDF windows are large, then it is quite likely that [µ−, µ+] will span some bin bound-
ary. Conversely, if the CDF windows are small, then most windows will probably
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fall within a single histogram bin. In applications where the data outcomes can take
on many values, most of the CDF windows will be quite small, so the Bin Overlap
problem is less of an issue.

Note that the accuracy of the histogram KLD score as a prediction of the actual
savings degrades smoothly as the Bin Overlap problem becomes more and more severe.
That is to say, if the bin containment assumption is true for all of the data outcomes,
then the prediction will be perfect. If it is only true for 99% of the outcomes, it will
still be highly accurate.

The point of the histogram KLD score is that it allows us to choose the best possible
context function. If the score becomes less accurate, then it may interfere with our
ability to choose the best context function. However, the context function selected by
the KLD score, though it may not be optimal, will still probably be good. Thus, the
failure of the bin containment assumption does not break the algorithm, but merely
causes some degree of performance reduction.

In Section 3.11.1 below, a method is presented to deal with the Bin Overlap prob-
lem. This method is used for all the applications described in this thesis, with the
exception of the pattern classification application of Chapter 7. In Chapter 7 we dis-
cuss an alternative strategy for dealing with the Bin Overlap problem. This is to use
the KLD score merely as a heuristic to generate a list of candidate features. Then, as
a post-processing step, a “brute-force” search is used to find the best context function
from the list of candidates. This strategy works because of the relatively small size
of the datasets typically considered in the pattern classification problem. However, it
results in a less pure version of the PITA algorithm.

3.11.1 Fine Graining Technique

This section presents a solution to the Bin Overlap problem based on the idea of fine

graining. The idea of the fine graining approach is to imagine that there are two
data sets we wish to model, the original data set X= {Xk} and an auxiliary data
set Y= {Y k}. The goal is to encode both X and Y and achieve the lowest possible
net codelength for the combined database. Now, we assume that Y has already been
well-modeled and encoded as a bit stream. Thus it does not matter what the original

51



3.11 Bin Overlap Problem

contents of Y were; the {Y k} outcomes can be assumed to be just a sequence of bytes.
It is also assumed that there are at least as many of these Y k outcomes asXk outcomes.

The trick is to encode the Xk and Y k as joint outcomes Zk = {Xk, Y k} instead
of encoding them separately. This can be done simply by slicing the outcome window
assigned to eachXk by its model uk into 256 subwindows, each corresponding to a Y k

outcome. The joint encoding scheme does not help or hurt us in terms of codelength,
as the number of bits required for a joint outcome is just:

L(Zk) = − log2

uk(Xk)

256
= − log2 u

k(Xk) + 8

= L(Xk) + L(Y k)

Thus, encoding a Zk outcome costs exactly as much as encoding the corresponding
Xk and Y k outcomes separately. So what does this subdivision of the CDF window
achieve? The point is that by making the CDF outcome windows smaller, we make
it much less likely for a window to span a histogram boundary. This means that the
codelength savings predicted by the histogram KLD score will become much more
accurate. Consider the following lemma.

Lemma. Consider a dataset X= {Xk} with associated models {uk}, and a two-
bin histogram with width distribution E = [0, 1/2, 1], and height distribution E ′ =

[0, R/2, 1], where we assume 1 < R < 2 for simplicity. Let N1, N1/2, N2 be the
number of left-bin outcomes, boundary-spanning outcomes, and right-bin outcomes
respectively:

N1 = |{k : µk+(Xk) < 1/2}| (3.3)

N1/2 = |{k : µk−(Xk) < 1/2 < µk+(Xk)}| (3.4)

N2 = |{k : µk−(Xk) > 1/2}| (3.5)

We will call the outcomes corresponding to N1 and N2 the “clean” outcomes, since
they fit cleanly into a histogram bin. The outcomes corresponding to N1/2 are called
“dirty” outcomes. The change in net codelength caused by the histogram transforma-
tion is bounded by:
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∆L ≥ N1 log2(R) + (N1/2 +N2) log2(2−R) (3.6)

∆L ≤ (N1 +N1/2) log2(R) +N2 log2(2−R) (3.7)

It follows that the difference between the maximum and minimum possible change
in codelength is given by:

∆Lmax −∆Lmin = N1/2

(
log2(R)− log2(2−R)

)
(3.8)

Proof. For the clean outcomes assigned to the left bin, the bin containment assumption
(Equation 2.7) holds. The probabilities of all these outcomes are increased by a factor
R and so the codelengths are reduced by log(R). Similarly, for the clean outcomes
assigned to the right bin, the codelengths change by an amount log(2−R). The code-
length changes for the dirty outcomes are clearly bounded by these values. Thus the
maximum codelength savings corresponds to the case where the N1/2 dirty outcomes
are all updated by log(R), and the minimum corresponds to the case where they are all
updated by log(2−R).

This lemma indicates that the critical factor preventing us from using the simple
formula for the histogram savings is the number of dirty outcomes N1/2. The fine-
graining scheme allows us to reduce the number of dirty outcomes, and thus come
arbitrarily close to the exact formula for the histogram savings.

To see this, given the dataset {Xk}, the models {uk}, and the auxiliary data out-
comes {Y k}, define the “fine-grain” CDF points as follows:

µk−(Zk) = µk−(Xk) +
uk(Xk) ∗ (Y k − 1)

τ
(3.9)

µk+(Zk) = µk−(Xk) +
uk(Xk) ∗ (Y k)

τ
(3.10)

Where we assume τ = 256 since the Y k outcomes are just bytes. This is nothing
more than a way of slicing the CDF window for a particular outcome into τ equally
sized bins. Now we can state another lemma.

Lemma. Given a dataset {Xk}, models {uk}, and histogram partitionE = [0, 1/2, 1],
letN1, N1/2, N2 be defined as in Lemma 1 above. Now let the auxiliary outcomes {Y k}
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be drawn uniformly at random on a range [1, 2 . . . τ ], and let the fine grain models be
defined as in Equation 3.9- 3.10 above. Finally let N ′1, N

′
1/2, N

′
2 be the fine-grain ana-

logues of N1, N1/2, N2 using the same histogram partition. Then:

E[N ′1/2] =
N1/2

τ

Proof. All outcomes that were clean in the original space will remain clean in the
fine-grain space, since:

µk−(Xk) ≤ µk−(Zk) < µk+(Zk) ≤ µk+(Xk)

Thus if any outcome is dirty in the fine-grain space, it must also have been dirty in
the original space. Now consider a CDF outcome window that was dirty in the original
space. Since the fine-grain transition partitions the outcome window into disjoint re-
gions, there is exactly one value of Y k for which the corresponding fine-grain outcome
spans the histogram boundary. By assumption, the probability of this Y k outcome
is τ−1. Therefore, the expected number of dirty outcomes in the fine-grain space is
simply τ−1N1/2.

The Lemma given above refers only to the case of two-bin histograms, but it should
be obvious that the same basic idea applies when dealing with multi-bin histograms.

The first Lemma shows that the variation in the savings achieved by the histogram
update depends on the number of dirty CDF outcomes. The second Lemma shows that
when transitioning to the “fine-grain” outcome space, the number of dirty outcomes
is reduced by a factor of τ . Thus, in the fine-grain outcome space, the KLD score of
the PIT histograms (Equation 2.10) is an accurate measure of the codelength savings
achieved on the joint encoding task.

The fine-graining method raises the following question: how do we know the sav-
ings we achieve on the combined data X+Y corresponds to savings in the real data X,
and not the auxiliary data Y? The point is that Y is random by assumption, so it can
never be substantially compressed. Thus the codelength L(Y) is basically constant. So
the majority of the savings achieved on L(Z) should correspond to reductions in L(X).
Note that we are always able to calculate the codelengths of the original data L(X) and
the joint data L(Z), so we can find L(Y) as well, since L(X)+L(Y)= L(Z). There are
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some subtleties here, of course. However, the results of Chapter 8 and Chapter 9 pro-
vide empirical evidence that the fine-graining scheme works: the histogram KLD score
generated by using fine-grained outcomes provides an accurate prediction of savings
on the real X data.

55



Chapter 4

Alternative CDF Transformation
Techniques

4.1 Introduction

The PITA algorithm developed in Chapter 3 used the histogram-based CDF transfor-
mation of Chapter 2 to update an ensemble of models. This model ensemble update
has several key properties:

• The transformation is determined by a small number of summary statistics re-
lated to the PIT values φk (the histogram bin counts).

• The transformation is defined using a small number of parameters (the normal-
ized histogram bin counts).

• Using only the summary statistics, it is possible to make accurate predictions
about the codelength savings that will be achieved by using the transformation
to update the model ensemble.

• In order for the predictions to be accurate, the CDF outcome windows had to be
small. If this assumption is not met, then the fine-graining trick of Section 3.11.1
can be used to artificially thin the windows.

In this chapter, we will describe a new set of CDF transformation methods that have
similar properties. To understand the similarities and differences between the new
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Algorithm 3 One round of test selection and scoring.
given data samples X = {xk}, associated contexts C = {ck},
PIT values {φk}, statistical test battery W.
for k = 1 : N do

for w ∈W do
if w(ck) then

STATS(w)→ log-stat (φk)

end if
end for

end for
for w ∈W do

PARAM(w) = calc-param(STATS(w))
SCORE(w) = scoring-function(STATS(w))

end for
w∗ = arg maxw SCORE(w)
for all k do

if w∗(ck) then
uk := cdf-update-function(uk, param(w∗))
φk := cdf-update-function(φk, param(w∗))

end if
end for

transformations and the previous one, consider Algorithm 3. This algorithm shows
one round of the PITA algorithm, with abstract versions of various operations and
quantities. The concrete versions of the abtract concepts corresponding to the PIT
histogram transformation are as follows:

• STATS(w) - histogram bin counts.

• PARAM(w) - normalized histogram bin counts.

• scoring-function - histogram KLD score.

• cdf-update-function - histogram based CDF update.
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In this chapter we discuss a new set of CDF transformations, with associated meth-
ods of computing STATS(w), PARAM(w), and SCORE(w). There is a nice relationship
between the form of the transformation function and the appropriate φk-related statis-
tics that must be logged to optimize the transformation. Note that for the case of the
histogram transformation, it is trivial to compute PARAM(w) from STATS(w) - they are
essentially the same thing. For the new transformations, the optimal parameter will be
a function of the logged statistics, but not always a simple function. Table 4.1 provides
a summary of the new transformations and their properties.

Table 4.1: Summary of CDF transformations. The function 11j is an indicator func-
tion returning 1 if its argument is in the jth histogram bin. See text for definition of
functions H(β), h(β), and d(φ, f).

TEST STATS PARAM SCORE

Histogram γj = 1
N

∑
k 11j(φ

k) β∗j = γj
∑

j γj log(γj)

Power Law γ = 1
N

∑
k log φk β∗ = −γ−1 − 1 log(β + 1) + βγ

Exponential γ = 1
N

∑
k φ

k h(β∗) = γ H(β∗)− β∗γ
Laplacian γ = 2

N

∑
k |φk − 1/2| h(β∗) = γ H(β∗)− β∗γ

Shifted Laplacian γ = 2
N

∑
k d(φk, fk) h(β∗) = γ H(β∗)− β∗γ

Note that for practical reasons it is essential for the data contained in the STATS

object to be quite small. This is because in principle, the size of the context function
battery |W| is very large. If a large number of summary statistics are required for each
context function, then the total memory requirements will be enormous. To use the
histogram-based CDF transformation, a set of histogram bin counts must be logged
for each context function. If the number of histogram bins is B, then the total memory
requirement is O(B|W|). The new methods of this chapter will require essentially only
one statistic per test, giving memory requirements of O(|W|).

The most important transformation developed in this chapter is unfortunately also
the most complex. This is the Shifted Prediction Laplacian transformation described in
Section 4.6. This transformation makes it possible to to use predictor context functions
f = f(c) ∈ [0, 1] instead of the simple binary context functions previously considered.
If the predictions f(Ck) accurately predict the φk, such that the differences f(Ck)−φk
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cluster around 0, then this transformation will yield substantial savings. This new
technique greatly expands the scope of the PIT analysis method.

4.2 CDF Transformation Functions

To begin the development, consider the properties that a CDF transformation function
T must have. The function T maps CDF points to new CDF points: µ′ = T (µ). In
order for the updated points {µ′0, µ′1, . . . µ′n} to constitute a valid CDF, the function T
must have certain properties:

• It must be a mapping of the form: T : [0, 1]→ [0, 1].

• The transformation must have T (0) = 0 and T (1) = 1.

• The transformation must be monotonically increasing: dT
dy
> 0, y ∈ [0, 1].

From these definitions it becomes clear that a CDF transformation is itself just a
CDF for a numeric variable distributed on the [0, 1] interval. Furthermore, the deriva-
tive t(y) = dT

dy
of the transformation can be thought of as a PDF. This makes sense

upon reflection: what PIT analysis is really doing is modeling the distribution of the
encoded data φ.

The derivation given in Chapter 2 produced a formula that predicted the codelength
savings achieved by applying the histogram update. This derivation relies on the cru-
cial assumption that each CDF outcome window [µ−, µ+] was completely contained
within a histogram bin. The logic of this chapter relies on a similar assumption, which
is simply that the CDF outcome windows are small: u = µ+ − µ− � 1.

If this assumption holds, then the change in probability caused by applying some
CDF transformation T (y) can be found by Taylor expanding T (y) around µ−:

µ′+ − µ′− = T (µ+)− T (µ−)

= T (µ− + u)− T (µ−)

=
(
T (µ−) + u

dT

dy

∣∣
y=µ−

+ u2 1

2

d2T

dy

∣∣
y=µ−

+ . . .
)
− T (µ−)

≈ u · t(µ−)

≈ u · t(φ)
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4.2 CDF Transformation Functions

The approximation φ ≈ µ− is valid because µ− < φ < µ+ and all three values
are close together by assumption. This expression shows that the function t(y) plays
the role of an expansion factor. CDF outcome windows around φ will be expanded or
contracted depending on the value t(φ). The normalization requirement

∫ 1

0
t(y)dy = 1

indicates that in order to expand some regions of the unit interval, other regions must
be contracted.

Now, given the database {Xk} and corresponding models {uk} as discussed in
Chapter 3, the overall change in codelength will be given by:

L− L′ = −
∑
k

log uk(Xk) +
∑
k

log uk
′
(Xk)

= −
∑
k

log uk(Xk) +
∑
k

log
(
uk(Xk)t(φk)

)
≈

∑
k

log t(φk) (4.1)

This idea provides the foundation for the new types of model ensemble updates
to be discussed below. Given a CDF transformation function T (y) with an associated
PDF t(y), the codelength change achieved by applying T to all of the {uk} is a simple
function of the above sum.

In principle, Equation 4.1 alone is sufficient. To predict the savings resulting from
a model ensemble update using function t(y), it is sufficient to traverse the database
and compute the sum

∑
k log t(φk). The drawback is that this requires the specific

function t(y) to be known in advance of the traversal. This allows no flexibility in
adapting the function t(y) to the statistics of the data. A better strategy is to select a
specific t(y) from a family of parameterized transformations t(y, β) by selecting an
optimal parameter β∗, which is calculated from φk-related statistics. The following
sections show how to do this for certain parameterized functions t(y, β).

For the sake of notational simplicity, in this chapter codelength savings are mea-
sured in nats. One nat is equal to 1/ log(2) ≈ 1.443 bits.
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4.3 Power Law Transformation

4.3 Power Law Transformation

Consider transformation PDFs of the form t(y) = λyβ . To ensure normalization, λ
must be chosen such that:

1 = λ

∫ 1

0

yβdy

= λ

[
yβ+1

β + 1

]1

0

=
λ

β + 1
→ λ = β + 1

Then, plugging this choice for the function t(y) into Equation 4.1 we obtain the
following expression for the codelength savings:

∆L

N
=

1

N

∑
k

log t(φk)

=
1

N

∑
k

log λ+ log(φk)β

= log(β + 1) +
β

N

∑
k

log(φk)

= log(β + 1) + βγ (4.2)

Where the quantity γ = 1
N

∑
k log φk has been identified as the relevant statistic

for this transformation. Choosing a value β that maximizes the codelength savings ∆L

is thus a simple matter of taking derivatives with respect to β. The result is:

β∗ = −1

γ
− 1 (4.3)

Thus, to use the power law CDF transformation, it is necessary to traverse the
dataset and compute the sum

∑
k log φk. Knowing this value (and nothing else), allows

the optimal power β∗ and the resulting savings ∆L∗ to be calculated.

61



4.4 Exponential Transformation

4.4 Exponential Transformation

Consider transformation PDFs of the form t(y) = λ exp (−βy). Normalization is
ensured by choosing λ such that:

1 = λ

∫ 1

0

exp (−βy)dy

= λ

[
− exp (−βy)

β

]1

0

=
λ

β
(1− exp (−β))

→ λ =
β

1− exp (−β)
(4.4)

Plugging this choice for the function t(y) into Equation 4.1 results in the following
expression for the codelength savings:

∆L

N
= log(β)− log(1− exp(−β))− β

N

∑
k

φk (4.5)

= H(β)− βγ (4.6)

Using the shorthand H(β) = log(β) − log(1 − exp(−β)), and γ = N−1
∑

k φ
k

is the key statistic corresponding to this transformation. The optimum value for β is
determined by the condition:

h(β∗) = γ (4.7)

Where h(β) = dH
dβ

, and is given by:

h(β) =
1

β
− exp (−β)

1− exp (−β)
=

1

β
+

1

1− exp β
(4.8)

Unfortunately, it is impossible to find an analytic solution to this equation that
would give the optimal parameter β∗ as a function of γ. At this point it is useful to
state a lemma concerning the properties of the function h(β).

Lemma. The function h(β) of Equation 4.8 has the following properties:
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4.4 Exponential Transformation

• limβ→∞ h(β) = 0

• limβ→0+ h(β) = 1/2

• dh
dβ
< 0 for β > 0

Proof. The first property is evident upon inspection of h(β).
The second property can be proved by rewriting h(β) and Taylor expanding the

exp(β) terms:

h(β) =
1 + β − exp(β)

β(1− exp(β))

=
1 + β − (1 + β + β2

2
+O(β3)

β(1− (1 + β + β2

2
+O(β3)))

=
−β2

2
+O(β3)

−β2 +O(β3)

As β → 0+, the above expression converges to 1/2. The third property can be
shown by computing the derivative dh

dβ
:

dh

dβ
= − 1

β2
+

exp β

(1− exp β)2

=
β2 exp(β)− (1− exp(β))2

β2(1− exp(β))2

=
(β2 + 2) exp(β)− (exp(2β) + 1)

β2(1− exp(β))2
(4.9)

Let us rewrite the numerator of Equation 4.9 as v−w, where v = (β2 + 2) exp(β)

and w = (exp(2β) + 1). The derivatives of w and v are:

w′ = 2 exp(2β)

v′ = 2 exp(β)(1 + β +
β2

2
)

w′ − v′ = 2 exp(β)(exp(β)− 1 + β +
β2

2
)

The identity exp(β) = 1 + β + β2/2 + β3/3 + . . . implies w′ > v′. This inequality
and the fact that w(0) = v(0) = 2 by inspection imply that w > v for β > 0. So
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4.5 Laplacian Transformation

the numerator v − w of Equation 4.9 is negative for β > 0. The denominator of
Equation 4.9 is clearly positive for β > 0, which implies the third property.

The result of the Lemma implies that if γ ∈ [0, 1/2], then a solution of the equation
h(β∗) = γ can be found using a fast binary search in β. Note also that since φk ∈ [0, 1],
γ = N−1

∑
k φ

k ∈ [0, 1]. The case where γ ∈ [1/2, 1] is discussed in Section 4.7
below.

4.5 Laplacian Transformation

In this section we will consider transformations of the form t(y) = λ exp (−2β|y − 1/2|).
This development is basically similar to the one given above for the exponential trans-
formations. The normalization factor can be derived as follows:

1 = λ

∫ 1

0

exp (−2β|y − 1/2|)dy

= 2λ

∫ 1

1/2

exp (−2β(y − 1/2))dy

= 2λ(exp β)

∫ 1

1/2

exp (−2βy)dy

= 2λ(exp β)

[
exp (−2βy)

−2β

]1

1/2

=
λ

β
[1− exp (−β)]

→ λ =
β

1− exp (−β)

Plugging this choice for the function t(y, β) into Equation 4.1, we obtain the fol-
lowing expression for the codelength savings:

1

N
∆L = log(β)− log(1− exp(−β))− 2

β

N

∑
k

|φk − 1/2|

= H(β)− βγ
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4.6 Shifted Prediction Laplacian Transformation

Where H(β) is the same as in the previous section, and γ = 2N−1
∑

k |φk − 1/2|
is the key statistic for this transformation. Using this modified form for γ, we obtain
the same optimization criterion h(β∗) = γ. Thus the same fast binary search method
can be used to find β∗. In this case the requirement γ ∈ [0, 1/2] implies that the φk

have clustered near the center of the unit interval. The case where γ is outside of this
range is discussed in Section 4.7 below.

4.6 Shifted Prediction Laplacian Transformation

The previous section considered a Laplacian transformation centered at y = 1/2. This
CDF transformation has the effect of expanding the central regions of the [0, 1] interval,
while contracting the marginal regions. This transformation is useful if the φk tend to
cluster around 1/2.

However, sometimes the φk cluster, but in some other region of the unit interval.
Furthermore, sometimes the φk do not show an aggregate clustering tendency, but it
is possible to make a context-dependent prediction fk = f(Ck) about where the PIT
value will fall. If the prediction is good, then the differences φk − fk will cluster
around 0. The goal of this section is to find a transformation that can exploit this
ability to predict φk.

The obvious function to use would be t(y, β, f) = λ exp (−2β|y − f |). The prob-
lem with this transformation is that the normalization factor λ becomes a function not
only of β, but also of f . Because fk = f(Ck) is different for each outcome, the code-
length savings expression becomes intractable. Specifically, the k-dependent terms do
not nicely collapse into a single sum as in Equations 4.2 and 4.6.

This problem can be solved by defining a modular distance function d(y, f) as
follows:

d(y, f) =

{
|y − f | : |y − f | < 1/2
1− |y − f | : |y − f | > 1/2

(4.10)

Our expansion function will then be t(y, β, f) = λ exp (−2βd(y, f)). The reason
for using this modular distance function is to simplify the expression for the normal-
ization factor λ. As illustrated in Figure 4.1, by using the modular distance scheme,
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4.6 Shifted Prediction Laplacian Transformation

Figure 4.1: The image on the left shows a simple double exponential with λ = 1.5.
The plot on the right shows a modular double exponential, also with λ = 1.5 and using
a prediction of f = .3. The green and yellow regions have the same area in both plots.
Because of this modular shift of the unit interval, the normalization factor for the PDF
depends only on λ and not on the prediction f .

the integral
∫ 1

0
t(y, β, f)dy becomes independent of the prediction f . Thus the nor-

malization factor λ takes on the exact same form as in Equation 4.4. Furthermore, the
savings achieved by the transform, and the condition for the optimal value β∗, will be
exactly the same as in Equations 4.6 and 4.7, except with a different k-sum:

1

N
∆L = log(β)− log(1− exp(−β))− 2β

N

∑
k

d(φk, fk)

= H(β)− βγ

Where H(β) is the same as above, and γ = 2N−1
∑

k d(φk, fk) is identified as
the key statistic for this transformation. Using the new definition for γ, the same
optimization criterion h(β∗) = γ results from attempting to maximize the codelength
savings, and the same fast binary search method can be used to find β∗. Here the
requirement γ ∈ [0, 1/2] implies that the average modular distance d(φk, fk) is less
than 1

4
.
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4.7 Reversing the Exponentials

4.7 Reversing the Exponentials

For the CDF transformations based on the exponential distribution, involving the opti-
mization criterion h(β∗) = γ, we saw that if the condition γ ∈ [0, 1/2] held, then the
optimal parameter β∗ was positive and could be found with a fast binary search. Also,
for all the γ statistics discussed above, it is the case that γ ∈ [0, 1]. Thus, to complete
the development we must consider the case where γ ∈ [1/2, 1].

This condition corresponds to a situation where the φk cluster on the opposite loca-
tion from where the given transformation “expects” them to. In other words, the basic
exponential transformation tends to expand the left side (near 0) of the unit interval,
while contracting the right side (near 1). If the φk cluster near 0, then γ < 1/2 and
savings can be achieved by the transformation with β > 0. If the φk cluster near 1,
however, then γ > 1/2 and the β-calculation technique breaks down. For the Lapla-
cian transformation, γ < 1/2 and savings are achieved if the φk cluster near 1/2. If
the φk cluster at the edges of the unit interval, the method will break down. A similar
idea holds for the Shifted Prediction Laplacian.

Fortunately a simple trick allows us to solve this problem. The trick is just to use a
reversed transformation. These reversed transformations are shown in Table 4.2.

Table 4.2: Reversed Exponential Transformations.

Transformation Reversed Form STATS

Exponential λ exp (−β(1− y)) γr = 1
N

∑
k(1− φk)

Laplacian λ exp (−2β(1/2− |y − 1/2|)) γr = 2
N

∑
k(1/2− |φk − 1/2|)

Shifted Prediction λ exp (−2β(1/2− d(y, f))) γr = 2
N

∑
k(1/2− d(φk, fk))

As can be seen from the table, the relevant statistics γr for each reversed transfor-
mation are related to the original statistics: γr + γ = 1. Therefore, if for the original
transformation we find γ > 1/2, then the reversed transformation will have γr < 1/2.
Thus, we can find an optimal β value for the reversed transformation using the condi-
tion h(β∗) = γr.
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4.8 Summary

In this chapter we discussed several alternate types of CDF transformations that can be
used in different situations. The characteristics of these transformations are summa-
rized in Table 4.1.

For the power law, exponential, and basic Laplacian transformations, the main ben-
efit in comparison to the histogram transformation of Chapter 3 is that the new transfor-
mations require only a single parameter β∗. In contrast the histogram transformation
requires B − 1 parameters, where B is the number of histogram bins. Empirically,
the distribution of the φk data is often relatively well described by an exponential or
Laplacian distribution. Thus, from the perspective of model complexity, it is better to
use a one-parameter transformation if it describes the data reasonably well. A better
codelength savings can always be obtained by using enough histogram bins, but this
comes at the price of increasing model complexity.

The main important result of this chapter, however, is the shifted prediction Lapla-
cian transformation. This tool significantly expands the power of PIT analysis. Now,
the statistical test battery W can be enhanced to include predictor functions f(Ck) ∈
[0, 1] as well as simple binary context functions w(Ck) = {0, 1}. If these predictor
functions are good, that is if the modular distances d(fk, φk) cluster around 0, then
substantial savings will be achieved. As is the case with the binary context functions,
we can use a “shotgun” approach and define many predictor functions, letting the PITA
algorithm select the best ones.

It should be clear that there exist many more valid CDF transformations than those
listed in Table 4.1. Of particular interest would be a Gaussian-style transformation of
the form t(y) = λ exp(−βy2) or something similar. The problem with this function is
that the normalization factor λ takes on a complex form (essentially the error function).
The exploration of other transformations remains as future work.
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Chapter 5

Related Work

In this chapter, we discuss some ideas and algorithms that are related to the PITA al-
gorithm. The most similar ideas are the Maximum Entropy framework and boosting
algorithms (e.g. AdaBoost). Sections 5.1 and 5.2 discuss the similarities and differ-
ences between these ideas and PITA. Section 5.3 discusses the relationship between the
PIT histogram and various Goodness of Fit tests discussed in the statistical literature.
Finally, Section 5.4 discusses alternative uses of the PIT in fields such as forecasting
and econometrics.

5.1 Maximum Entropy

The Maximum Entropy (MaxEnt) principle, introduced by Jaynes (1957), suggests
choosing a statistical model based on two considerations:

• The model should satisfy a set of empirical constraints specified by the data.

• The model should have the maximum entropy consistent with these constraints.

Here the word “entropy” refers to the information (Shannon) entropy (see Ap-
pendix A). The empirical constraints depend on a set of context functions Wi. Given
these functions, the constraints are expressed by the requirement: Edata[Wi] = EQ[Wi].
In words, the empirical expectations of the context functions must match the model ex-
pectations. These expectations are calculated as follows:
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5.1 Maximum Entropy

Edata[Wi] =
N∑
k=1

Wi(X
k) (5.1)

EQ[Wi] =
∑
x

Q(x)Wi(x) (5.2)

It can be shown that the two requirements of matching expectations and maximiz-
ing entropy imply models of the form:

Q(x) =
1

Z
exp

(∑
i

λiWi(x)
)

(5.3)

Where Z is a “partition function” that ensures normalization, and the λi are a set
of parameters that must be found using an optimization process. The algorithm most
commonly used for this purpose is called Generalized Iterative Scaling [Darroch &
Ratcliff (1972)], though other options are available [Malouf (2002)]. The optimization
is convex, which ensures that the optimal choice of λi is unique, but the optimization
algorithm may be quite computationally expensive.

The above, non-conditional form is not very useful, because it does not allow us to
include any context information. A modified form is as follows:

Q(x|c) =
1

Zc
exp

(∑
i

λiWi(x, c)
)

(5.4)

Where the normalization factor Zc is specific to the context c. The constraints are
given by:

Edata[Wi] =
N∑
k=1

Wi(X
k, Ck) (5.5)

EQ[Wi] =
∑
x,c

Q(x, c)Wi(x, c) (5.6)

The literature records several impressive applications of the MaxEnt framework,
especially in the field of statistical natural language processing [Berger et al. (1996);
Ratnaparkhi (1999); Rosenfeld (1996)]. The main power of the MaxEnt idea is that
it allows information from many diverse sources (context functions) to be combined
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5.1 Maximum Entropy

together to produce one aggregate probability distribution. For example, a well known
problem in language modeling is the existence of long range dependencies. Consider
the following sentence:

If the value of the dollar continues to fall, then the Japanese government
will be forced to intervene by weakening the yen, in order to protect ex-
porters.

In the above sentence, the word “then” clearly depends strongly on the presence
of the word “if” at the beginning. It is very difficult for language models such as
N-grams or Hidden Markov Models to express the dependence between the “if/then”
pair, because the two words are relatively far apart. In MaxEnt, the relationship can
be expressed simply by writing a special context function that refers specifically to the
words “if” and “then”:

W (x, c) =

{
1 “if” ∈ c & x = “then”
0 otherwise (5.7)

While MaxEnt is a powerful and widely used algorithm, it has some drawbacks.
One problem is the requirement of finding the λi parameters of Equation 5.3. The
optimization process requires the repeated computation of the model expectations in
Equation 5.6. Note how the sum in this equation runs not only over all outcomes x, but
over all contexts c as well. While the space of outcomes (X) is assumed to be relatively
small, the space of contexts C is enormous, so this sum is generally intractable. Thus,
the following approximation is used instead:

EQ[Wi] ≈
∑
x,c

Q(x|c)Q̃(c)Wi(x, c) (5.8)

=
N∑
k=1

∑
x

Q(x|Ck)Wi(x,C
k) (5.9)

Where Q̃(c) =
∑

k δ(c, C
k) is the empirical frequency of context Ck. Now, instead

of summing over all possible contexts c, we now need to compute sums over the entire
data set. Thus, even with the approximation, these sums can be quite costly, especially
if the data set is too large to fit in memory. Furthermore, the optimization algorithm
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proceeds by making a series of iterative updates to the λi parameters until they con-
verge. Each time an update is made, the model Q(x|c) changes, and so the sums must
be recomputed.

Another drawback to MaxEnt relates to the feature selection problem. While Max-
Ent gives us a principled way of constructing a model from a set of feature expecta-
tions, it does not instruct us how to select those features in the first place. Of course,
there are several well known methods for feature selection [McCallum (2003); Pietra
et al. (1997)]. The basic principle is: “freeze” the model by holding the current λi
values constant. Then add a new feature Wnew to the model with parameter α. Find
the value of α that optimizes the change in log-likelihood, and use this optimal im-
provement value as a score for Wnew. Finally, select the new feature that has the best
score, add it to the set of Wi, and rerun the λi optimization process.

Clearly, this method has several problems. It is not clear how valid the “freez-
ing” approximation is: will the predicted improvement really be close to the actual
improvement? Also, the optimization of α requires several traversals of the entire
dataset. Finally, the λ-optimization must be re-run after adding each new feature. Of
course, the previous λi values can be used as a starting point for the subsequent op-
timization, and this will speed up convergence, but overall it is clear that the MaxEnt
feature selection methods are computation-intensive.

5.1.1 Comparison

In several ways, MaxEnt is quite similar to the PITA algorithm. Both MaxEnt and
PITA solve the problem of integrating information from multiple context functions.
Also, the tendency of the PIT values to become increasingly random is conceptually
similar to the idea of maximizing entropy.

It is actually possible to describe PITA as a layered version of MaxEnt in which the
empirical constraints come from the encoded data, not the original data. In this view,
in each PITA round, we build a single feature MaxEnt model of the distribution of PIT
values. A PIT histogram bin count plays the same role as an empirical constraint in
MaxEnt. Since we are using only a single feature, it is trivial to find the required λ
parameter. After building a single-feature MaxEnt layer, we update the encoded data
and repeat the process to pruduce the next layer.
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In spite of these similarities, PITA appears to have several advantages compared
to MaxEnt. As noted above, MaxEnt requires an optimization process to find the
λ parameters, which involves sums over the entire data set. If the data set is large,
especially if it is too large to fit in memory, computing these sums can be enormously
costly. In contrast, the PITA algorithm requires only a single traversal of the data set for
each round. All information necessary to choose the best test, and to find the optimal
parameters for the test, are contained in the histogram bin counts (or other statistics as
discussed in Chapter 4).

As noted in Chapter 1, any feature-based modeling method must solve the twin
problems of feature combination and feature selection. The MaxEnt solution to feature
combination is not very elegant: it simply relies on large amounts of computation, and
on the fact that the optimization is convex. The feature selection method of MaxEnt
is also somewhat crude. In contrast, the PITA algorithm contains a “built-in” feature
selection method, which has a nice interpretation in terms of the randomness deficiency
revealed by a context function.

Both feature scoring schemes depend on an approximation, but the conditions un-
der which the PITA approximation is valid are easily understood: the CDF outcome
windows must be small. The conditions under which the MaxEnt approximation is
valid are not as well understood.

Perhaps the main difference between PITA and MaxEnt is the shift to the AIT view
of modeling. This makes many things more clear. For example, it turns out that it is
possible to use MaxEnt for layering, just like PITA. However, this fact is not obvious,
and this technique seems to be rarely used. In the AIT view, it becomes clear that any

kind of randomness deficiency in the encoded data can be used to improve any kind
of model. For example, if we have a Hidden Markov Model of a time series data set,
we can search the encoded data for randomness deficiencies. If one is found, we can
immediately obtain an improved model.

5.2 Boosting

When attempting to predict some event, it is often the case that one cannot define any
single rule that makes good predictions with high probability, but one can obtain a
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large number of rough heuristics with predictive power that is slightly better than ran-
dom. The goal of boosting is to combine such “weak” hypotheses together to form one
“strong” predictor. To achieve boosting, it is necessary to solve the feature combination
and feature selection problems mentioned in Chapter 1. Most boosting algorithms pro-
ceed greedily: in each round, the weak hypothesis that provides the best improvement
is added to the model.

Perhaps the most well-known boosting algorithm is called AdaBoost [Freund &
Schapire (1996)]. The key idea of AdaBoost is to maintain a set of weights dkt for each
data sample Xk. In the t-th boosting round, AdaBoost searches for a weak hypothesis
that provides a good prediction on the weighted distribution:

W ∗
t = arg min

W∈W

∑
k

dkt (W (Ck)−Xk) (5.10)

Where W is the set of weak hypotheses (context functions in our terminology), and
Ck are the patterns or contexts. Note that in the basic form of AdaBoost, only binary
outcomes X ∈ {0, 1} are considered. After a new context function W ∗

t is selected in
round t, the weights are updated as follows:

dkt+1 =

{
dkt (W ∗(Ck) = Xk)
γt · dkt (W ∗(Ck) 6= Xk)

(5.11)

Where γt > 1 is a factor which depends on the weighted error rate achieved by
W ∗
t , and after the update is applied the distribution is normalized so that

∑
k d

k = 1.
The effect of this update is that the samples which are incorrectly classified by W ∗

t

get larger weights, while the weights of correctly classified samples tend to decrease.
This weighted distribution mechanism is what allows AdaBoost to solve the feature
selection problem. The weights are an approximation of the ability of the current
model, which is just the set of W ∗

t hypotheses that have been chosen so far, to describe
the data. Thus the score is a function of the form S = S(W,X,Q@) as required for
“smart” feature selection.

Various modifications exist that allow AdaBoost to be used for multiclass prob-
lems and regression. However, the original design of AdaBoost is intended to solve
the binary pattern classification problem. It is not clear how well-suited the variant
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versions are to the other types of problems. For example, to solve the multiclass prob-
lem with Mc classes, AdaBoost simply makes Mc copies of the dataset, and attacks the
multiclass problem as a larger set of binary problems [Friedman et al. (2000)].

There have been several subsequent studies analyzing AdaBoost and describing
variants. In [Friedman et al. (2000)], AdaBoost was viewed as a form of additive lo-
gistic regression, in which each model update attempts to minimize an exponential
loss criterion. It was shown by [Kivinen & Warmuth (1999)] that the AdaBoost up-
date to the weight distribution is equivalent to finding the distribution dt+1 such that
the Kullback-Liebler divergence D{dt+1||dt} with the previous distribution dt is min-
imized, while also ensuring that the weighted error of the new weak hypothesis is
1/2. A variation on this idea is used by InfoBoost [Aslam (2000)], which updates the
weight distribution to ensure that there is zero mutual information between it and the
prediction of the new weak hypothesis.

5.2.1 Comparison

There are several important similarities between boosting methods and the PITA algo-
rithm described in this thesis. In both cases, the goal is to integrate predictions drawn
from many diverse data sources into one combined prediction. Like the boosting algo-
rithms, PITA proceeds through a number of rounds, selecting a new context function in
each round. Also, this selection is greedy: the feature that provides the best immediate
performance gain is selected.

Furthermore, the PITA algorithm involves an effect (histogram flattening) which
is conceptually similar to the decorrelation effects of AdaBoost and InfoBoost. In
AdaBoost, the updated weight distribution dt+1 is uncorrelated with W ∗

t . In PITA, the
updated PIT histograms associated with W ∗

t should be flat.
Finally, both PITA and AdaBoost include “smart” feature scoring methods. Ada-

Boost uses the notion of a weighted sample distribution, while PITA uses the idea of
the encoded data. These mechanisms take into account the current state of the model,
allowing a “smart” score of the form S = S(W,X,Q@).

However, there are several important differences between boosting methods and
PITA. The first difference is that PITA learns conditional density models Q(x|c) while
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AdaBoost learns point prediction functions X̂ = F (C). While it is difficult to obtain
a conditional density from a point prediction, it is easy to go the other way:

x̂ = arg max
x

Q(x|C) (5.12)

Image compression is an example of an application where this asymmetry is im-
portant. Due to lighting effects, it is very common for images to have many extreme
pixels (i.e. 0 or 255 for 8-bit pixels). Thus, for many pixels, a good model should
include substantial probability at both extreme values of the [0, 255] range, with rela-
tively small probability in the center. Now, AdaBoost can be used in regression mode
to make a point prediction of a pixel outcome. But in the case of a pixel with large
probability at the extreme values, then the point prediction will be near the center of
the range. Any reasonable method for turning a point prediction into a density will
assign large probability to the center of the range, if that’s where the point prediction
falls. For this reason, it is very hard to use regression based techniques to solve the
image compression problem.

Another key advantage of PITA compared to AdaBoost is the option of layering.
As explained in Section 3.8, given an arbitrary “black box” model for some data set,
it is possible to layer a set of PITA transformations over the original model, achieving
improved performance. It does not appear to be possible to use AdaBoost in this way.

5.3 Goodness of Fit Tests

The PIT histogram idea discussed in this thesis bears a strong similarity to various
kinds of goodness of fit tests used in the statistics literature. In this section, we will
describe two important goodness of fit tests and illustrate the differences between these
tests and the methods of the thesis.

The main use of goodness of fit (GOF) tests is to determine whether or not a given
model is a good fit for a particular empirical data set. This is called the model selection
problem. If the GOF test indicates that the data set is very unlikely given the model,
one rejects the model.
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5.3.1 Kolmogorov-Smirnov Test

Consider a data set X = {X1, X2 . . . XN}. The empirical cumulative distribution
function of the data set is given by:

PN(x) =
1

N

N∑
k=1

I(Xk, x) (5.13)

Where I(Xk, x) = 1 if Xk < x and 0 otherwise. Let P (x) be the real cumulative
distribution generating the data. The Kolmogorov-Smirnov statistic is defined as:

DN = sup
x
|PN(x)− P (x)| ∈ [0, 1] (5.14)

One of the most important results in theoretical statistics, the Glivenko-Cantelli
theorem, tells us that in the limit of largeN ,DN converges to 0 almost surely [Lamperti
(1996)]. However, if we look instead at the value

√
NDN , it turns out that the tendency

of DN to approach zero is balanced by the
√
N term. Thus

√
NDN does not converge

to zero, but rather takes on some non-zero random value. Kolmogorov found that the
distribution of this random value was related to a type of random walk process called
the Brownian bridge B(t):

P
(

lim
N→∞

√
NDN < x

)
= P

(
sup
t∈[0,1]

|B(t)| < x
)

(5.15)

The distribution on the right hand side of the above limit does not depend on the
data X or the distribution P and its form (probability distribution function) is known.
Given a data set and a model, by using the model Q(x) in place of P (x) in Equa-
tion 5.14 we can compute the implied value of

√
NDN and look up its probability by

consulting the distribution of supB(t). If this distribution indicates that the obtained√
NDN is very unlikely, we reject the model Q.

Another test related to the Kolmogorov-Smirnov test is the Cramer-von Mises cri-
terion. The difference is that instead of using the supremum value of |PN(x)− P (x)|,
one integrates this function over the range of x. This results in a statistic called ω2.
As in the case of the Kolmogorov-Smirnov test, if the model distribution Q(x) is the
same as the real distribution P (x), then the distribution of ω2 converges to a known
function.
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5.3.2 Pearson’s χ2 Test

Pearson’s χ2 test is another well-known goodness of fit test [Chernoff & Lehmann
(1954)]. This test is better suited to discrete (non-continuous) probability distributions
than the Kolmogorov-Smirnov test. To use the test, one first partitions the full data
outcome space into a set of bins or regionsRj . If the data is discrete, then choosing the
discrete outcomes as the region partition is a natural choice, but outcomes can also be
combined to form larger regions (this may be useful if some outcomes are very rare). If
the data are numeric, then a set of boundaries must be chosen to determine the region
partition.

Given the regions Rj and the model density q(x), one calculates the expected num-
ber of observations for each bin:

Ej =
∑
x∈Rj

q(x) (5.16)

Where the sum should be replaced with an integral if the distribution is continuous.
Then one calculates the observed number of values that fall into a given bin:

Oj =
1

N

N∑
k=1

I(Xk, Rj) (5.17)

Where I(Xk, Rj) = 1 if Xk ∈ Rj and 0 otherwise. Based on these observed and
expected values, one computes the statistic:

X2 =
J∑
j=1

(Oj − Ej)2

Ej
(5.18)

As with the statistics
√
NDN and ω2 discussed above, the X2 statistic converges to

a known distribution, the χ2 distribution, as the number of observations becomes large.
One can then look up the probability of observing a given X2 statistic, assuming the
data is generated by the model distribution q(x), by consulting the χ2 distribution.

One issue with the χ2 test is that the χ2 distribution depends on a parameter called
the degrees of freedom. To find the correct large N behavior for X2, we need to find
the correct degrees of freedom parameter. The parameter used in conjunction with
this test is J −K, where J is the total number of regions Rj and K is the number of
parameters in the model Q(x).
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5.3.3 Comparison

The PIT histogram method of Section 2.4 is similar in some sense to the GOF tests
described above. Like the GOF tests, the PIT histogram contains a set of statistics that
depend on both the data and the model. By analyzing these statistics, we can decide if
the model provides a good fit to the underlying data.

The PIT histogram is especially similar to Pearson’s χ2 test. In both cases, we are
dividing an outcome interval into bins, counting the number of samples that fall into
each bin, and comparing the observed number to the expected number. The closer the
observed values are to the expected values, the better we judge the model to be. A
flat PIT histogram implies that the observed distribution of PIT values is equal to the
expected distribution, so the model is good.

There are several important differences between the PIT histogram and the GOF
test statistics mentioned above.

• The PIT histogram does not assume we are dealing with a single model. In gen-
eral we will have many different data points, each with its own model. The PIT
histogram provides a summary of the extent to which the ensemble of models
describes the data set.

• The PIT histogram provides a way of updating the model(s), through the CDF
update discussed in Section 2.4.

• The meaning of the score associated with a PIT histogram is different from the
score associated with a GOF test. The PIT histogram score indicates the code-
length savings that will be achieved by applying the update. The GOF scores
indicate the probability of observing a data set assuming the data was generated
by a given model.

Thus, although the PIT histogram is conceptually similar to the GOF tests de-
scribed in this section, we see that it serves a very different purpose.

The following example contrasts the philosophy of this thesis to the mindset of
traditional statistics. Assume there is a data set X, and some default model class M

used to describe X. We use the word “default” to mean that there is no real reason to
believe that M describes the data well, but M has worked in other cases and there is
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no reason to believe it does not describe the data well. Assume that M is the family of
Gaussians.

A rough description of the approach used in traditional statistics would be as fol-
lows. Using the data X and the model class M, apply some procedure to obtain a set
of optimal parameters θ∗, resulting in a specific model M = M(θ∗). From this model
M and the data, calculate a GOF statistic such as

√
NDN or ω2 as discussed above.

Based on the results of the GOF test, determine whether the modelM is a good model.
If not, we conclude that the Gaussian is not a good choice for the model class M,
and go in search of a new model class such as the Laplacian or the Poisson. Note the
background assumption here that “real” data is generally described by some relatively
simple model class (Gaussian, Laplacian, etc).

The mindset of this thesis is different. We follow the same initial parameter-finding
step, obtaining the same initial model M . Then we use the data set and the model to
construct a PIT histogram. If the histogram indicates that M is a bad model, we sim-
ply update M using the histogram, to produce a new model M ′. This process may
be repeated several times, using different subsets of the data set, with each update im-
proving the model. The resuling complex model bears little relationship to the original
model class M.

5.4 Alternate Uses of Probability Integral Transform

The methods of this thesis are based on the Probability Integral Transform, an idea
which has been known in statistics for some time. The basic property of the Probability
Integral Transform is as follows. Let P (x) be the cumulative distribution function for
some continuous random variable X: P (x) = Pr(X < x). If we define the random
variable Y = P (X), then the distribution of Y is uniform on [0, 1] [Angus (1994)].

The most basic use of the PIT is to do model selection. The logic is as follows.
In real world statistics, we rarely know the real distribution P (x) generating the data.
Rather, we have a model distribution Q(x), and we want to know if it is good. Due
to the special property, if Q ≈ P than the resulting PIT histogram will be nearly flat
(U(0, 1)). On the other hand, if the PIT histogram is substantially uneven, then we
should reject the model.
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The main power of the PIT, emphasized in this thesis, is that it can be used when
there are many different models associated with many different outcomes. If the mod-
els (or predictions) are created by a human expert, then the PIT distribution can be
viewed as a way of measuring the calibration of the expert. In particular, we would
like to know if his predictions are overconfident or underconfident. Overconfidence
means that the expert’s predictions are too sharp relative to his actual predictive abil-
ity. Thus he might say: “Next year, GDP growth will be between $14 billion and $15
billion”. If the actual GDP growth turns out to be only $10 billion, then we conclude
that the expert’s prediction was overconfident (for this trial). Conversely, the expert
might try to avoid being proved wrong by saying: “Next year, GDP growth will be
between $0 and $100 billion”. We call this prediction underconfident. Underconfident
predictions are more likely to be correct, but because they are so vague, they are not
very useful.

If the expert only makes predictions relating to one type of quantity, then there
are a variety of ways to measure his accuracy. However, consider the case where the
expert is asked to make various predictions relating to quantities such as GDP growth,
interest rates, currency exchange rates, stock prices, and so on. In this case it is hard to
gauge his calibration, since the predictions deal with outcomes from different spaces.
Exchange rate fluctuations are measured in units like dollar/yen, while GDP growth
might be measured in billions of dollars.

The PIT idea provides a way to measure the calibration of an ensemble of mod-
els. Instead of analyzing the distribution of the actual data outcomes, one transforms
them into PIT values using the associated models. Say the expert predicts a Gaussian
distribution for GDP growth that has a mean of $15 billion and a standard deviation
of $1 billion. Then if the real GDP growth is $10 billion, the resulting PIT value will
be quite small. By aggregating all of the PIT values from many prediction-outcome
trials, and plotting the results in a histogram, we can measure the expert’s calibration.
A histogram in which most of the values are clustered at the extremes indicates the
expert is overconfident. If the PIT values are clustered near the center, the expert is
underconfident, while a flat histogram indicates good calibration.

The Probability Integral Transform has been discussed in some research in fields
such as economics and finance, mostly for the kinds of purposes mentioned above.
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For example, [Diebold et al. (1998)] uses the PIT to evaluate density forecasts. Simi-
larly, [Gneiting et al. (2007)] also used the PIT to evaluate density forecasts, but added
a another term that measured the predictive sharpness of the forecast. There appear to
be few examples of research using the PIT idea in the machine learning literature. One
such example is [Learned-Miller & John (2003)], where a PIT-related scoring function
is used to define an Independent Components Analysis (ICA) algorithm. Other than
that reference, the PIT idea is not widely used in machine learning.

The PIT is also related to the copula, a mathematical construction that has gen-
erated a huge amount of interest in the financial statistics literature [Embrechts et al.

(2002); Frees & Valdez (1998); Genest & Rivest (1993)]. The idea behind the cop-
ula is to map arbitrary multivariate distributions from some original D-dimensional
data space to the [0, 1]D unit hypercube. This is done in such a way that the marginal
distributions of each variable are U(0, 1). A famous theorem by Sklar (1959) shows
that this can be done for any continuous distribution. Once the distributions have been
mapped to the U(0, 1) space, the dependencies between the variables can be modeled
using various standard methods. It is much easier to find a good multivariate model for
the [0, 1]D space than for a space in which each dimension has a very different range
(GDP growth, interest rates, etc.)

5.4.1 Comparison

As noted, the PIT idea does not seem to be used much in the machine learning litera-
ture. Some interest has been shown towards the PIT in the fields of finance, economics,
and weather forecasting. In these fields it is useful to be able to evaluate the predic-
tive quality of an ensemble of models. The PIT is also sometimes used to do model
selection, by exploiting the idea that a good model should produce a flat PIT histogram.

The use of the PIT idea in this thesis goes much further than these previous appli-
cations, in several ways. The following concepts seem to be novel:

• The use of the PIT histogram to define a model update that can be applied to an
ensemble of models simultaneously.

• The use of the histogram KLD score to measure the codelength savings achieved
by applying the update.
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• The identification of the PIT values with the encoded data in the AIT view of
learning, and the resulting approach to statistical modeling based on the search
for randomness deficiencies.
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Chapter 6

PIT Analysis for Image Compression

6.1 Introduction

As noted in the previous chapters, many different problems can be formulated as an at-
tempt to obtain good approximations Q(x|c) of a real complex conditional distribution
P (x|c). One such problem is lossless image compression. Here the x data is a pixel
value, and the c is the history of previous pixels.

Lossless image compression is a good starting point because it provides a rigorous
test of the core idea. To see why, consider the testing process it involves. One first
invokes the encoder and obtains a compressed file. One then measures the length of
the compressed file (shorter codelengths are better). Finally, one invokes the decoder
on the compressed file, and checks that the output is exactly the same as the original.
Image compression is a rigorous test: if the algorithm contains a conceptual or tech-
nical flaw, either it will fail to achieve good compression, or the decoded image will
be corrupt. Thus, the fact that the PITA algorithm can be used for image compression
proves that the ideas are basically sound.

The image compression application discussed in this chapter is roughly similar to
the raw data (e.g. speech) modeling applications discussed in the subsequent chap-
ters. In each case, a large quantity of raw data is available, and the goal is to find
the best possible model for the data. However, an important difference in the image
compression application is that here the entire dataset comes from a single image. A
640x480x3 image contains about 9.2 · 106 pixels, so this is quite a large number of
outcomes.
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6.2 Image Compression Background

There are two basic kinds of data compression. In lossless compression, the data that
comes out of the decoder is exactly the same as the data that goes into the encoder. In
lossy compression methods, the data that comes out of the decoder is not required to
be exactly the same as the original data.

A typical image contains a lot of precise information that the human eye is not
capable of perceiving. By dropping components of images that the eye cannot perceive,
improved compression rates can be achieved. Thus a major component of research in
lossy image compression involves human perception. The question is: in what ways
can an image be corrupted by data loss, and still remain “good enough” perceptually?
Obviously, this kind of research tends to be somewhat subjective.

In contrast, lossless compression is entirely objective. Given two compression al-
gorithms, one can easily decide which algorithm is better by testing them both on a
large database. The algorithm that achieves a shorter compressed file size is better.

Data compression involves two conceptually distinct problems: modeling and en-

coding. Modeling is the problem of finding good distributions for pixel outcomes as
discussed above. The encoding problem is: given a probability distribution Q(x) for
a pixel and the actual pixel outcome X , obtain a sequence of bits sx that represents
the outcome. As mentioned in Appendix A, a technique known as arithmetic encod-
ing [Witten et al. (1987)] provides a very good solution to the encoding problem. So
the research in this chapter focuses exclusively on the modeling problem. The full
image compression algorithm discussed in this chapter combines the PITA algorithm
with arithmetic encoding.

This mindset contrasts with the approach taken by “traditional” compression algo-
rithms, which do not make an explicit conceptual separation between modeling and
encoding. Consider for example the LZW algorithm [Ziv & Lempel (1978)]. This al-
gorithm operates by running a sliding window over the history of outcomes. Instead of
encoding an outcome explicitly, it instead sends a pointer to the location of the previous
occurrence of the outcome in the history. If an outcome occurs frequently, it is likely
its previous occurrence was quite recent. Pointers to recent positions are encoded using
a small number of bits, and so frequent outcomes tend to get short codes.
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The recent literature on image compression also tends to exploit the conceptual
separation between modeling and encoding made possible by the advent of arithmetic
encoding. However, the general trend is not necessarily toward obtaining the best pos-
sible models (and thus compression rates). This is because highly optimized systems
used to obtain the best possible compression rates tend to be too slow for practical use.
Thus, substantial research is dedicated to finding ways to compute good codes rapidly.
One innovation in this area is the use of Golomb codes, which are optimal for a certain
type of distribution [Weinberger et al. (2000)]. Empirically, it is found that the distribu-
tion of prediction errors generated using standard pixel prediction techniques roughly
matches the distribution for which Golomb codes are optimal. Encoding a pixel error
value using a precomputed Golomb code takes much less time than encoding the value
using arithmetic encoding.

Another line of research involves the question of how to rapidly combine context
information to produce a pixel prediction or probability distribution. In the Glicbawls
compression algorithm, the pixel is predicted using a least squares method based on the
already processed regions above and to the left of the current pixel [Meyer & Tischer
(2001)]. CALIC, another successful image compression algorithm, predicts pixels
using the local image gradient [Wu & Memon (2000)]. The prediction is also weighted
using context adaptive error feedback.

6.3 Adapting PITA for Image Compression

Lossless image compression requires a model of the probability of an image Q(I).
However, the space of image outcomes is far too large to model directly. Instead, the
problem is broken up into a series of conditional probability distributions, in which the
probability of each pixel is conditioned on the previous pixels:

Q(I) = Q(X1) ·Q(X2|X1) ·Q(X3|X2, X1) . . .

=
∏
k

Q(Xk|Ck) (6.1)

This results in a codelength of:
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L(I) = −
∑
k

logQ(Xk|Ck)

Where Xk is the kth pixel and Ck is the history of previous pixels up to k. To
achieve the best possible codelengths it is therefore necessary find a good model such
that Q(x|c) ≈ P (x|c), where P (x|c) is the “real” conditional distribution. Thus, the
PITA algorithm can be adapted for the image modeling problem simply by identifying
the data outcomes {Xk} as the pixels, and the contexts {Ck} as the pixel histories.
The initial models are uniform over the range of values a pixel can take on, which in
this work is set to be [0, 255]. The context functions W are discussed in Section 6.3.1
below.

The algorithm has two phases, a learning phase and an encoding phase. In the
learning phase, the PITA algorithm is run. The output of this phase is a set of final
models {uk} along with tests w∗t and transformation parameters [H∗0,t, H

∗
1,t]. Both of

these outputs are required for the “encoding” phase. The indices of the selected tests
w∗t are encoded at the beginning of the compressed file, followed by the transformation
parameters [H∗0,t, H

∗
1,t]. No special compression schemes are used to encode this model

information, which is small compared to the pixel information. Following the context
function information comes a bit string which represents the pixels {Xk} encoded
using the associated models {uk}.

The decoding process is basically simple. The receiver first reads the context func-
tion w∗t and parameter information [H∗0,t, H

∗
1,t]. Then, for each pixel, the decoder starts

with a uniform model, and updates the model using the context functions and the his-
togram transformations. The resulting model is used to decode the pixel. The decoded
pixel is then placed into the history (context) C for use in decoding the next pixel.
Thus, for every pixel, the decoder has the exact same set of context functions, param-
eters and history data used by the encoder.

The following implementation note is worth mentioning. The PITA algorithm calls
for the encoder to maintain separate models uk(x) for each pixel. If there are 107

pixels (a medium size image) then storing all of the models will require storage of
256 · 107 values. This is a large memory requirement. Furthermore, if an attempt were
made to encode an image with a larger range of pixels (e.g. 16-bit or [0, 65335]), then
this problem would become very severe. Fortunately, however, it is not necessary to
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maintain the full CDF for each pixel in the PITA algorithm. Only three numbers per
pixel are actually required: µk−(Xk), φk, and µk+(Xk). These represent the lower CDF
bound, the PIT value, and the upper CDF bound respectively.

On the decoding side, it is not necessary for the decoder to keep the model uk after
the pixel Xk has been decoded. Thus, memory is not a problem for the decoder, but
the decoder faces a different computational problem. Unlike the encoder who only
needs the CDF bounds µk−(Xk) and µk+(Xk), in a naı̈ve application the decoder must
compute the entire CDF for each model uk, from the w∗t and [H∗0,t, H

∗
1,t] information.

However, another optimization can be used that allows the decoder to avoid the
requirement of computing the full CDF. Instead, the decoder performs a kind of binary
search, evaluating the CDF only at a small number of points. Without getting into the
details of arithmetic encoding, it can be understood as transmitting a value γ ∈ [0, 1)

from the encoder to the decoder. The decoder compares γ to the values of the model
CDF to find the actual outcome. For example, consider the case where the actual
outcome isX = 145. Then the decoder evaluates µ at eight different values as follows:

γ ≥ µ(128), γ < µ(192), γ < µ(160), γ ≥ µ(144)

γ < µ(152), γ < µ(148), γ < µ(146), γ ≥ µ(145)

Then because µ(145) ≤ γ < µ(146), the decoder concludes that the outcome is
X = 145. Thus, the decoder only has to evaluate µ at 8 different points, instead of
the 256 points that would be required in a naı̈ve application. This would be even more
important if 16-bit images were used instead of 8-bit images.

6.3.1 Context Functions

This section describes the context functions W used for the application. As is generally
true, using a larger number of tests (casting a wider net) leads to greater savings. How-
ever, it also leads to larger computational cost. Also, as more and more transformations
are applied, it becomes harder and harder to find further randomness deficiencies. We
have experimented with the following context function definitions:

• General Context Function (GCF): fires for all pixels.
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• Median Edge Predictor (MEP): predict the pixel value using the Median Edge
Predictor [Memon et al. (1997)].

• Color Context Function (CCF): fire for one and only one color channel.

• Red Difference Predictor (RDP): attempt to predict the value of the blue and
green pixels based on the difference between the value of the current red pixel
and the previous red pixel.

• Gradient Predictor (GP): predict the value of the target pixel using the simple
formula x = 2a− b, where a and b are the values of the pixel one element back
and two elements back, respectively.

• Abnormality Context Function (ACF): fires if one of the adjacent pixels was
assigned a low probability.

• Rectangular Region Context Function (RRCF): fires for all pixels in a simple
rectangular region.

For the items in the above list named “Context Functions” (GCF, CCF, etc) the
standard histogram-based CDF transform is used with 64-bin histograms. For items
named “Predictors”, the Shifted Prediction Laplacian Transform of Section 4.6 is used.
The above list is a tiny fraction of the full set of context functions that can be defined
based on the pixel history. Further investigation and development of more advanced
context functions and predictors should lead to further improvements in code length.

6.4 Experimental Results

In this section we evaluate the compression rates achieved by the PITA algorithm. The
compression results are compared to the well-known lossless image compression for-
mat PNG1. The PNG results are intended to provide a rough guide to how compressible
the images are.

We used two image databases to test the compression results. The first set is derived
from the standard Corel 5K stock photo database. We took the first 5 images from each

1http://www.w3.org/TR/PNG/
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Table 6.1: Compression results achieved by the PITA algorithm and by PNG on two
image datasets. Totals are given in millions (106) of bits.

Dataset Flat Total PITA Total PITA Ratio PNG Total PNG Ratio
Corel 9437 4880 0.517 4778 0.506

Hongo 7373 3646 0.494 3856 0.523

subfolder in the “Lib1” section of the database, for a total of 1000 images. The second
set of 1000 images was obtained from a trial run of an autonomous robot exploring
the local university campus (“Hongo”). Both datasets were originally encoded in PPM
format, and transformed into PNG using Matlab’s “imwrite” command.

Table 6.1 gives a brief summary of the compression results. The column “Flat
Total” shows the total codelength that would be required to encode the dataset using
a naı̈ve 8-bit per pixel code. The total codelengths used by PITA and PNG are also
shown. Note the large scale of the values (106 bits).

We also examined the bit savings achieved by each context function and predictor.
Results for ten test images are shown in Table 6.2. Obviously, the majority of the
savings is produced by the Median Edge Predictor (MEP). This is due not only to the
predictive power of this function, but also to the fact that it is applied first. The reported
values are the actual savings, not the predicted savings from the histogram KLD score.

6.5 Summary

The main purpose of this chapter was to provide a proof of concept of the PITA al-
gorithm. Since lossless image compression is a hard test, by showing that PITA can
be used for this purpose, we prove that the algorithm has no deep conceptual flaws.
The compression rates are encouraging, but not revolutionary. The PITA algorithm’s
performance depends strongly on the choice of context functions W used. More care-
ful research into the choice of context functions may yield compression rates that are
closer to the state of the art.

It is worth noting the large scale of the codelength savings achieved in this exper-
iment. As shown in Table 6.1, the total codelengths involved are on the order of 109

bits. This large scale implies that there is much room to justify complex models when
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Table 6.2: Results for different bit savings achieved by various context functions and
predictors are here. Savings are given in 1000s of bits.

Image MEP CCF(r,g,b) RDP ACF Total PITA Total PNG
corel0 4231.8 21.1 0 139.8 4343.5 4611.0

corel1 4887.5 15.4 0 118.7 4971.3 5409.0

corel2 4885.6 11.8 61.0 194.1 5100.2 5412.1

corel3 3035.4 88.9 11.9 230.1 3322.5 3029.0

corel4 3344.9 31.6 2.9 205.8 3537.1 3633.4

hongo0 2431.0 80.8 16.9 54.4 2544.5 2438.3

hongo1 2882.3 142.6 40.9 49.8 3076.3 2927.8

hongo2 3514.9 66.2 2.6 90.4 3631.7 3377.6

hongo3 3272.2 41.5 4.8 89.7 3365.5 3171.6

hongo4 3109.4 182.3 47.0 57.0 3355.3 3195.5

dealing with such large databases. For example, consider a complex model that can be
used to reduce the total codelength by 1%. This corresponds to a savings of about 90
million bits. Thus, even if the model costs 10 million bits, (far larger than the models
typically used in machine learning), the overall savings will still be very large [Burfoot
& Kuniyoshi (2009)]. This net savings justifies the model in the MDL sense [Rissanen
(1978)]. This theme appears again in Chapter 9.
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Chapter 7

PIT Analysis for Pattern Classification

7.1 Introduction

In this chapter we apply the PITA algorithm to the problem of binary pattern classi-
fication. The result is immediately recognizable as the training phase of a boosting
algorithm. The idea of boosting is to combine information from multiple “weak” pre-
dictors together to produce a single “strong” classifier [Schapire (1990)]. The weak
predictors used in boosting play the same role as the battery of context functions W

in the PITA algorithm. There is a very strong structural similarity between Fund-
aBoost and the well-known AdaBoost algorithm [Freund & Schapire (1997)], which
allows us to make very clean comparisons between the two. AdaBoost, variants of
AdaBoost, other boosting algorithms, and the relationship between these algorithms
and PITA are discussed at length in Chapter 5.

There is an important practical difference between the pattern recognition applica-
tion discussed in this chapter, and the other uses of the PITA algorithm described in
this thesis. In the other applications, we are interested in building models of raw data
(images, words, speech, etc.) In pattern classification, the goal is to model the condi-
tional probability of a set of label data given a corresponding set of data objects. Since
the modeling target (Xk data) is the set of labels, the information content of the data
being modeled is quite small: on the order of one bit per data sample. The median size
of the domains used in the experimental results section is 3160, which corresponds
to an information content of just under 400 bytes. In this extremely low information
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7.2 FundaBoost

content regime, it is very difficult to justify the use of any model by the MDL princi-
ple [Rissanen (1978)]. In contrast, the raw-data modeling applications discussed in the
other chapters involve much larger data sets (the speech database of Chapter 9 contains
more than 4 · 108 bits).

Because of the small size of the data set considered in the pattern classification
problem, a “pure” application of the PITA algorithm does not yield competitive per-
formance. The Bin Overlap problem described in Section 3.11 becomes particularly
serious when dealing with binary outcomes, since the CDF window for an outcome
will often be quite wide, and thus very likely to overlap a histogram bin boundary.
Below we describe several modifications to the base PITA algorithm, which improve
its performance for limited data problems.

7.2 FundaBoost

In this section we describe FundaBoost, which is the result of using the PITA algo-
rithm, with some modifications, to do pattern classification. In this domain, we have
a set of binary labels, corresponding to the data outcomes Xk in the PITA algorithm.
The goal is to predict the labels from a set of data objects, which correspond to the
PITA contexts Ck. The statistical tests W are defined based on the raw data objects;
these are equivalent to the weak predictors used in boosting. The PITA algorithm is
the training phase of the boosting process; the outputs are the weak predictors w∗t and
parameters H∗t .

Because there are only two outcomes, we use two-bin PIT histograms. A two-
bin histogram has only one free parameter, so in each boosting round we choose two
parameters λ∗0,t and λ∗1,t corresponding to w∗t = 1 and w∗t = 0 The w∗t and λ∗t obtained
from the training process can be used to classify new unseen data objects, as shown in
Algorithm 5.

The goal of FundaBoost is to obtain good models Q(x|c) of the probability of
a label given a data object. The uk = Q(x|Ck) distributions maintained by PITA
as simply the current model probabilities of a positive or negative outcome for the
label. Progress is measured by the codelength (negative log likelihood) that would be
required to encode the Xk data using the current models uk.
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7.2 FundaBoost

If necessary, model probabilities can easily be transformed into predictions. Given
a model CDF µ = [0, a, 1], the corresponding prediction is x̂ = 1 if a > 1/2 and x̂ = 0

otherwise. Using this relationship it is easy to calculate the current predictions x̂k for
each of the current models uk. The number of samples incorrectly classified by the
models uk is equal to:

Etrain = |{k : uk(Xk) < 1/2}| (7.1)

This implies that the number of errors on the training data is bounded by the current
codelength:

|{k : uk(Xk) < 1/2}| =
∑

k:uk(Xk)<1/2

(1)

≤
∑

k:uk(Xk)<1/2

− log2 u
k(Xk)

≤
∑
k

− log2 u
k(Xk)

= L(X)

As noted above, because of the small size of the data being modeled we must
be very careful to conserve as many bits as possible. In particular this means that
the inaccuracies introduced by the Bin Overlap problem (Section 3.11) will be too
significant to overlook.

While the histogram KLD score is no longer a highly accurate predictor of the sav-
ings achievable by a context function, it still contains substantial predictive power. It is
likely that the context function which actually produces the optimal savings will also
reveal a substantial randomness deficiency in the encoded data. Thus, the histogram
KLD score can be used as a heuristic to help choose the best context function from
a large list. The modified version of PITA used in this chapter uses the histogram
KLD score to produce a heuristic ranking of the top M tests. Then, this reduced set
of candidate context functions are evaluated using a slower, brute-force method de-
scribed below. Because we have reduced the number of context function candidates,
the brute-force method still runs in a reasonable time. This modified version of the
PITA algorithm, called FundaBoost, is shown in Algorithm 4.
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7.2 FundaBoost

Algorithm 4 FundaBoost: modified PITA algorithm for pattern classification.
given data samples X = {Xk}, associated contexts C = {Ck},
context functions W.
initialize models U = {uk}
Φ = {φk} = U→ ProbIntTrans(X)

for t = 1 : T do
for w ∈W do

Φ0 = {φk : w(Ck) = 0}, H0 = histogram(Φ0)

Φ1 = {φk : w(Ck) = 1}, H1 = histogram(Φ1)

heuristic-score(w) = |Φ0| ·KLD(H0) + |Φ1| ·KLD(H1)

end for
{a} = lower-bin-prob(X , U )
{b} = upper-bin-prob(X , U )
let V be the M top tests by heuristic-score
for w ∈ V do
λ0,w = exact-lambda-search(w, {a}, {b}) // binary search
λ1,w = exact-lambda-search(¬w, {a}, {b})
S0 = exact-savings(λ0,w, w, {a}, {b}) // Equation 7.2
S1 = exact-savings(λ1,w, ¬w, {a}, {b})
exact-score(w) = S0 + S1

end for
let {w∗t , λ∗0,t, λ∗1,t} be the best test, parameters
for all k do

if w∗t (Ck) then
uk := λ∗1,t → cdf-remap(uk)
φk := λ∗1,t → cdf-remap(φk)

else
uk := λ∗0,t → cdf-remap(uk)
φk := λ∗0,t → cdf-remap(φk)

end if
end for

end for
output final distributions uk, optimal tests w∗t ,
transformation parameters λ∗0,t, λ

∗
1,t
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7.2 FundaBoost

Algorithm 5 The classification algorithm.
Given: learned parameters w∗t , λ

∗
0,t, λ

∗
1,t

new sample c to classify
initialize µ = {0, .5, 1} // model CDF
for t = 1 : T do

if w∗t (c) = 1 then
µ := λ∗1,t → cdf-remap(µ)

else
µ := λ∗0,t → cdf-remap(µ)

end if
end for
if µ1 > .5, output TRUE, else output FALSE

7.2.1 Exact Method for Finding Histogram Parameters

The post-processing method for selecting the optimal CDF remapping parameters λ∗

can be understood by considering the update indicated by a two-bin histogram trans-
formation (Equation 2.4). Let the pre-update CDF be given by µk = {µk0 = 0, µk1, µ

k
2 =

1}. Let µk1 = Ak + Bk, where Ak is the region of the probability window that falls on
the left side of the histogram bin partition, and Bk is the region that falls on the right
side. The CDF remapping rule applies a factor λ to the left bin, and a factor (2− λ) to
the right bin. So the post-update CDF will be given by: µk′1 = λAk + (2− λ)Bk.

To find the optimal choice for λ using this update scheme, we must take the label
data into account. Let variables (ak, bk) be equal to (Ak, Bk) if the actual outcome if
Xk is true, and (.5−Ak, .5−Bk) otherwise. Then the pre-update probability assigned
to the correct outcome is uk = ak + bk, and the post-update probability is uk′ =

λak+(2−λ)bk. All of this is more difficult notationally than conceptually, see Table 7.1
for examples of how the various terms relate to one another. Now to find the optimal
λ we want the value that maximizes the total codelength. The codelength (and its
derivatives) of the data subset corresponding to a test w(Ck) = 1 is given by:
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L′ = −
∑

k:w(Ck)=1

log(λak + (2− λ)bk) (7.2)

dL′

dλ
= −

∑
k:w(Ck)=1

ak − bk

2bk + λ(ak − bk)
(7.3)

d2L′

dλ2
=

∑
k:w(Ck)=1

(ak − bk)2

(2bk + λ(ak − bk))2
(7.4)

The second derivative is clearly always positive and so we can find a root of the
first derivative (which is the codelength minimum) using a binary search in λ.

Table 7.1: Examples of relation between CDF and variables A,B, a, b,X
CDF Ak, Bk ak, bk : X=true ak, bk : X=false

µk = 0,.3,1 .3, 0 .3, 0 .2, .5
µk = 0,.9,1 .5, .4 .5, .4 0, .1
µk = 0,.6,1 .5, .1 .5, .1 0, .4
µk = 0,.5,1 .5, 0 .5, 0 0, .5

7.3 Experimental Results

We tested the performance of the proposed algorithm in comparison to AdaBoost.M1
on 25 of the datasets from the UCI machine learning repository [Asuncion & Newman
(2007)]. We chose the datasets as follows. We started from the set of 33 datasets dis-
cussed by [Dietterich (2000)]. Of these, we dropped the datasets containing less than
500 samples. This gave 14 data sets. We also added the following newer datasets from
the repository: “Abalone”, “Adult”, “Contraceptive”, “Cover”, “Magic”, “Mushroom”,
“Spam”, “Yeast”, “Connect4”, “Car”, and “Flare”.

As the proposed algorithm currently only works for binary classification problems,
the datasets with multiple class labels were modified to work as binary classification
problems. For several datasets there was one class much larger than the others; we
defined the binary problem to be predicting this class. When there was no such class,
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Table 7.2: Binarization modifications to non-binary UCI datasets. Domains not listed
were already formulated as binary prediction problems.

Domain Binarization
Abalone predict ring value < 9

Annealing predict class #3
Splice predict {“IE”,“EI”}

Segmentation predict {“brickface”,“cement”, “path”}
Satimage predict “grey soil” classes

Krk predict white win in < 13 moves
Vehicle predict {“bus”,“van”}
Shuttle predict “Rad Flow”

Waveform predict class 1
Contraceptive predict “No-use”

Cover predict “Lodgepole Pine”
Yeast predict “CYT”

Connect4 predict “win”
Car predict “unacc”

Flare predict > 1 class C flare.

we attempted to package similar classes together. These “binarization” modifications
are described in Table 7.2.

For the datasets with prespecified partition of training and test data (“Annealing”,
“Adult”, “Shuttle”, “Satimage”) we used the given partition. For the other datasets
without such a partition, we used 10-fold cross validation. The only exception is the
huge dataset “Cover”, which we split into training and test sets of 100,000 samples
each.

An important part of boosting is the selection of the set of weak predictors. The
following function bank was used in these experiments. For numeric attributes, a set
of 200 threshold points were chosen equally spaced between the minimum and maxi-
mum values of the attribute on the training data. An associated weak hypothesis was
defined that returns true if the attribute is below the threshold or missing. For nominal
attributes, a single function was defined for each possible value that returns true if the
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attribute is not missing and equal to the specified value. The logical inverse of the
above functions were also used. This choice for the weak classifier library is similar to
“FindAttRule” described in [Freund & Schapire (1996)].

In addition to defining the library of weak predictors, the critical parameter that
must be chosen for boosting algorithms is the number of rounds T . If too small a choice
is made for T , one might not achieve a sufficiently powerful classifier; if too large a
choice is made then overfitting will occur. AdaBoost seems to be more resistant than
other algorithms to the problem of overfitting due to its ability to increase the margin
between training examples [Schapire et al. (1998)], but overfitting is still a problem.

The T parameter was chosen dynamically using a “held-out” data scheme as fol-
lows. First, 10% of the training data was separated for use as a held out set. Then 1000
rounds of boosting were run for both algorithms, using the remaining 90% of the data.
The held out prediction errorEH(T ) as a function of training round for both algorithms
over the course of the learning. Then, the T ∗ value was calculated as follows:

T ∗ = arg min
T
EH(T ) (7.5)

In the case of a tie, the lower T value was selected. The trained classifier was rolled
back from T = 1000 to T = T ∗, and used to predict the test data. Table 7.3 shows the
distribution of T ∗ choices made for the set of 205 total trials (10 fold cross validation
was used for 20 domains; the remaining 5 domains used a single training/test run,
205 = 10 ∗ 20 + 5).

Table 7.4 shows the results of the comparison. We see that for many domains the
algorithms show similar performance, but there are several domains where strong dif-
ferences appear. Perhaps the most striking outcome is one the dataset “Krkp”, where
FundaBoost achieves 68 errors compared to AdaBoost’s 126, a reduction of nearly
50%. FundaBoost achieves an even better relative performance improvement on the
dataset “Shuttle”, though in this domain both error rates are very small in absolute
terms. FundaBoost also wins convincingly on the “Car” dataset. On the other side,
AdaBoost wins strongly on the “Vehicle” and the “Segment” datasets. Another inter-
esting point is that FundaBoost wins on all of the top six largest datasets.
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Table 7.3: Distribution of T ∗ selections over 205 trials.
FUNDABOOST ADABOOST

T ∗ ∈ [0, 200) 174 167
T ∗ ∈ [200, 400) 20 21
T ∗ ∈ [400, 600) 7 7
T ∗ ∈ [600, 800) 4 3
T ∗ ∈ [800, 1000) 0 7

7.4 Summary

This chapter discussed a modification of the PITA algorithm that could be used to
attack the binary pattern classification problem. When the abstract PITA algorithm was
instantiated to solve this problem, the result is recognizable as a boosting algorithm.
Here, the context function battery W plays the same role as the weak predictors of
boosting.

The main problem that occurs in the case of binary pattern classification is that
the Bin Overlap problem becomes very severe. This is because there are only two
outcomes, so each CDF outcome window is very wide and thus very likely to over-
lap a bin boundary. For this reason, the “pure” version of PITA, even when using the
fine-graining scheme, does not provide competitive performance. The FundaBoost al-
gorithm used in this chapter is a modified version of PITA, in which the histogram
KLD score is used as a heuristic rule to select a set of candidate context functions. Af-
ter selecting the best candidates using the histogram KLD score, a brute-force method
is used to compute the optimal parameters and exact codelength savings score.

The FundaBoost algorithm achieves performance that is competitive with the well-
known AdaBoost algorithm, on the set of problems investigated in this research. On
some domains FundaBoost does substantially better than AdaBoost, on other domains
it is substantially worse. One noteworthy trend was that FundaBoost won consistently
on the larger domains in the benchmark. Of course, these results need to be supported
by more extensive empirical studies on other data sets, and using different kinds of
context functions.
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7.4 Summary

Table 7.4: Performance comparison of AdaBoost and FundaBoost, using the T ∗ se-
lection scheme. The table shows the number of errors made on the held-out training
data (EH) and on the test data (ET ) after round T ∗.

FUNDABOOST ADABOOST

Domain # test EH ET EH ET

Annealing 100 3 8 4 7
CreditA 690 72 99 67 92
BreastW 690 26 40 16 32
Vehicle 840 50 88 26 53
CreditG 1000 184 260 182 254

Flare 1060 159 185 154 174
Cont 1470 311 431 314 424
Yeast 1480 300 390 306 421
Car 1720 51 63 60 97

Satimage 2000 15 58 12 59
Segment 2310 37 56 13 31

Sick 2800 36 66 36 73
Hypo 3160 44 42 39 44
Splice 3190 169 181 158 196
Krkp 3190 55 68 92 126

Abalone 4170 722 895 710 888
Spam 4600 213 287 181 281

Waveform 5000 581 599 523 579
Mushroom 8120 0 2 0 2

Shuttle 14500 3 8 3 18
Adult 15060 421 2122 427 2137
Magic 19020 2423 2761 2511 2840
Krk 28050 4346 4903 4466 5055

Connect4 67550 12634 13979 13017 14383
Cover 100000 2178 21621 2254 22073
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Chapter 8

PIT Analysis for Word Modeling

8.1 Introduction

This chapter describes how the PITA algorithm can be applied to the problem of mod-
eling word morphology. Word morphology is the study of how words are constructed
from letters. In English, some letter sequences are more likely than others. For exam-
ple, the sequence “thr” is common, whereas “qix” is rare. Also, whenever the prefix
“thr” is seen, the next letter is almost always a vowel. By writing down a set of con-
text functions W that refer to letter sequences, it is possible to construct a model of
the probability of a word using the PITA algorithm. This model can then be used for
various purposes, such as text compression and recognizing whether a rare word (such
as “mesonoxian”), not seen in the original corpus, is a real English word.

In addition to a statistical model Q(x|c), the PITA algorithm also chooses a set of
optimal context functions w∗t . These features can be useful for other purposes. For
example, in English it is very common for a word to end with the letters “-ing”. Since
this feature is very informative about the letter sequence, it will probably be chosen
by PITA (or another good feature selection algorithm). However, the “-ing” feature is
also very informative about the part of speech of a word. Specifically, if this feature
is observed, it is very likely that the word is a gerund. Similar observations can be
made about other suffixes such as “-ly” and “-ed”. Thus, the features selected by PITA
for the purpose of modeling letter sequences, can be reused for the purpose of part-of-
speech tagging, an important task in natural language processing [Manning & Schutze
(2002)].
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Using raw words as a data source is attractive for two reasons. First, labels are
unnecessary. Second, it is easy to obtain large quantities of data. Given a corpus of
106 words, with an average length of five letters, the “baseline” information content is
106 ∗ 5 ∗ log2(26) ≈ 2.4 ∗ 108 bits. This large quantity of data is important from an
MDL perspective [Rissanen (1978)], because it justifies the use of a complex model.
In the application described below, each PITA model ensemble update requires about
42 bits to encode. When the total size of the data is on the order of 108, it is quite easy
to find context functions that save more than 42 bits.

The application discussed in this chapter is different from the others described in
the thesis because the outcomes are non-numeric. This means that a single PDF will
correspond to many CDFs, depending on the outcome ordering. This is problematic
because PITA depends totally on the use of CDFs. This obstacle is overcome using the
outcome reordering scheme of Section 3.9, as discussed below.

8.2 Adaptation of PITA algorithm

The goal of the research of this chapter is to obtain a model for the probability of a
word. An n-letter word is treated as a n+ 1 length letter sequence {X1, X2 . . . Xn+1}.
The extra outcome is due to the fact that a special letter ‘]’ is added to indicate the
end of a word. Thus the word “thought” is represented as a series of outcomes {X1 =

t, X2 = h, X3 = o, . . . X7 = t, X8 = ]}. The probability of a word is then calculated
as a product of a series of conditional probabilities for each letter:

P (X1, X2, X3 . . . Xn+1) = P (Xn+1|X1, X2 . . . Xn)P (X1, X2 . . . Xn) (8.1)

=
n+1∏
i=1

P (Xi|X1 . . . Xi−1) (8.2)

=
n+1∏
i=1

P (Xi|Ci) (8.3)

Thus, the PITA algorithm will be used to find approximations Q(x|c) ≈ P (x|c)
where x is a letter outcome, and c is the history of previous letters. As usual, an
important problem will be to find a good set of context functions W that reveal the
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relationship between each letter and the preceding letters. Section 8.2.2 presents the
choice of context functions W used in this chapter.

This chapter demonstrates the use of several refinements to the basic PITA algo-
rithm. As noted above, the outcomes in this application are non-numeric. The outcome
reordering scheme of Section 3.9 is used to deal with this problem. The variable width
histogram technique discussed in Section 3.10, as well as the fine-graining scheme
of Section 3.11.1, are also used in this chapter. The technical details related to these
methods are discussed in the following sections, and the experimental results indicate
that they work.

8.2.1 Outcome Reorderings

PITA depends completely on the use of CDFs. The mapping from a PDF to a CDF
depends on the outcome ordering. If there are many equally valid outcome orderings,
there are many valid CDFs corresponding to the same PDF. This is not a problem when
the outcomes are numeric, since in that case the ordering is natural. But if the outcomes
are nominal (non-numeric), then the choice of an ordering can substantially impact the
ability of PITA to detect randomness deficiencies.

Consider the following example. There is a large census database which records
information about people such as their age, education level, profession, marital status,
and income. In the first case, the goal is to predict the person’s income from the other
attributes. Obviously, income is a numeric outcome. Consider a context function w
that fires if the person has completed a college degree. Since having a college degree
is associated with a higher income, we expect that the PIT histogram corresponding to
w = 1 will be skewed to the right of the [0, 1] interval (high incomes), while the w = 0

histogram will be skewed to the left (low incomes).
Now consider what happens when we try to predict the “profession” outcome in-

stead of the “income” outcome. Profession is a nominal (non-numeric) outcome with
values such as “engineer”, “lawyer”, “plumber”, etc. In contrast to the case of income,
there is no obvious way to order the outcomes. Now, there are many professions for
which a college degree is essential. So the college degree context function w should be
very useful to predict profession. But unless the outcomes are specifically ordered to
reflect their dependence on education (i.e. “professor”, “lawyer”, “doctor” on one side
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of the ordering, “plumber”, “construction worker”, and “farmer” on the other), then
the histograms associated with w will not necessarily be uneven.

The same basic problem occurs when the outcomes are letters. The obvious order-
ing of Latin letters is alphabetic (“a,b,c,. . . y,z”). But this is not a very useful ordering,
since the letters are not grouped together by their phonological function. For our pur-
poses it would be better if, for example, all the vowels were grouped together. This is
because there are many cases where observing a certain prefix (such as “thr” or “gr”)
makes it highly likely that the next letter will be a vowel. Other prefixes indicate that
the next letter will be a consonant, or that the word is about to end.

To deal with this problem, we simply define an extended context function w′ =

{w,O} where w is a basic context function, and O = {o1, o2 . . . o27} is an letter out-
come ordering. There are many possible ways to order the letter outcomes, but we use
a simple scheme based on a letter set S. The ordering O = O(S) simply moves the
letters contained in S to the head of the outcome ordering. As explained in Section 3.9,
the PIT values and model CDF updates can easily be redefined based on an alternate
outcome ordering, without changing anything else about the way PITA works.

8.2.2 Context Functions

We now define the basic context functions w, which are used in conjunction with
the outcome orderings O to build “extended” context functions w′ = {w,O}. We
used three sets of context functions, as shown in Table 8.2. Each type of function is
parametrized by a set S of letters, and by a number L which indicates how far back
in the history to search against. The notation {X−L, . . . X−1} indicates the history up
to a position L letters before the current outcome. The following list shows some ex-
amples of the meaning of the context functions in terms of the parameters L and S.
Section 8.2.4 describes the parameter sets used for L and S.

• PREFIX-UNIV, L = 2, ∈, S =“a,e,i,o,u” : true if the two previous letters are
vowels. Examples: position ‘v’ in “believe”, ‘t’ in “eat”.

• PREFIX-EXIST, L = 3, /∈, S =“a,e,i,o,u,y” : true if none of the previous 3 letters
are vowels (including ‘y’). Examples: positions ‘s,t,r,e’ in “stream”, positions
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‘t,h’ in “thought”. This test is very powerful because all words in English must
include a vowel.

• POSITIONAL, L = 1, ∈, S =“p,b,t,d,k,g” : true if the previous letter is a Stop
Consonant. Examples: ‘r’ in “proud”, ‘i’ in “king”. It is rare for two different
stop consonants to occur together (combinations such as “dk”, “bg”, “gp” occur
very rarely).

8.2.3 Variable-Width Histograms

As explained in Section 3.10, a PIT histogram is not guaranteed to reveal a randomness
deficiency in a subset of PIT values, even if one exists. It is possible for a PIT histogram
to be completely flat, even if the PIT values have a very strong randomness deficiency.
For example, consider a PIT distribution where 49% of the values lie in the [0, 1/4]

range, 49% lie in the [3/4, 1] range, and 1% lie in both the [1/4, 1/2] and the [1/2, 3/4]

ranges. If this distribution is viewed with an evenly spaced 4-bin histogram, a savings
of .86 bits per outcome can be achieved. However, if viewed using a standard 2-bin
histogram, then the distribution will appear to be completely flat.

In this chapter, PIT logging was performed using 32-bin histograms. To obtain
the model update, the 32-bin histograms were collapsed into 2-bin variable width his-
tograms. This method is explained in Section 3.10.

8.2.4 Size of Context Function Battery and Memory Requirements

We now analyze the size of the battery of extended context functions W′. Each ex-
tended context function is a combination of a basic context function and an outcome
ordering: w′ = {w,O}. Every basic context function is paired with every outcome
ordering, so the size of the extended battery is |W′| =|W| · |O|.

Both the basic context functions and the outcome orderings depend on letter sets S.
The letter sets were defined used some very rough knowledge of linguistic phonology,
as shown in Table 8.1. In addition to the 8 sets shown in the table, we also use 27
single-letter sets, corresponding to the 26 letters of the Latin alphabet plus the word-
end character. So the total number of letter sets is 35, and the number of outcome
orderings is |O|= 35.

106



8.3 Data Sources and Preprocessing

The number of basic context functions w can be calculated as follows. There are
three types of function PREFIX-UNIV, PREFIX-EXIST, and POSITIONAL. Each of these
depends on a parameter L, a parameter S, and a choice of ∈ vs. /∈. There are five
choices for L (1,2,3,4,5). So the total size of the basic package is |W|= 3∗2∗5∗35 =

1, 050, and the size of the extended package is |W′| =1, 050 · 35 = 36, 750.
Finally, to implement the variable-width histogram idea, each extended context

function w′ logs 32 histogram bin counts. The total number of counts required is
32 · 1, 050 = 1, 176, 000. These counts are the major determining factor in the total
memory requirements for the algorithm.

It is worth analyzing the complexity of the PITA model from an MDL perspective.
Specifying a test costs log2(|W′|)≈ 20.2 bits. Recall that we are logging using 32 bin
histograms, but performing model updates based on variable width 2-bin histograms.
To specify the variable bin width requires log2(31) ≈ 4.95 bits. The expansion factor
can be encoded with sufficient precision using 16 bits. Thus, the total number of bits
required for a single model update (one PITA round) is about 42 bits.

Table 8.1: Letter sets S used in defining the statistical tests.
Vowels a,e,i,o,u

Vowels + Y a,e,i,o,u,y
Stop Consonant p,b,t,d,k,g
Nasal Consonant m,n

Fricative Consonant s,z,c,h
Glide Consonant l,r,j,w,h

Unvoiced Consonant p,t,k,f,s
Voiced Consonant b,d,g,m,n,v,z,w

8.3 Data Sources and Preprocessing

For our datasets, we use a collection of novels downloaded from the internet. For the
training data, we used the novel “Little Women” by Louisa May Alcott. For the test
data, we used novels “Huckleberry Finn” by Mark Twain, “Democracy in America” by
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Table 8.2: Three types of context functions used in the word morphology experiment.
PREFIX-UNIV ∀{X−L, . . . X−1} ∈ S ∀{X−L, . . . X−1} /∈ S
PREFIX-EXIST ∃{X−L, . . . X−1} ∈ S ∃{X−L, . . . X−1} /∈ S
POSITIONAL X−L ∈ S X−L /∈ S

Table 8.3: Book information. The book “little” was used as training data.
book unique words total words total outcomes
little 8638 140250 707390

huckfinn 4583 81108 380410
democracy 8190 157750 869210

anna 10192 262660 1337600
mutual 12123 231660 1175900

Alexis de Tocqueville (English translation), “Anna Karenina” by Leo Tolstoy (English
translation), and “Our Mutual Friend” by Charles Dickens1. Some statistics about the
texts are shown in Table 8.3.

The following preprocessing was used to obtain the raw words from the electronic
text of the novels. First, we split the text into tokens by splitting whenever a white space
character was found. Next, all tokens that contained punctuation or capital letters were
removed. This left us with a list of common words corresponding primarily to real
words that exist in the English language. We also maintain counts of the words, and
factor these counts into our analysis (thus, the model attempts to assign shorter codes
to words that appear often). As noted above, we also append a special word-end letter
‘]’ so that the words are self-delimiting: no extra word-length variable is necessary.

In this application we use bigrams for the initial models over which the PITA up-
dates are layered. The parameters for the bigram models are estimated by simple
counting on the training data. The counts were initialized to 1 for each bigram letter
pair to prevent the model from assigning zero probability to a pair not observed in the
training data.

1 All of these texts can be found online at www.gutenberg.org.
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8.4 Experimental Results

The PITA algorithm was run on the training data (novel “little”) using the set of context
functions described above. Approximately 2200 PITA rounds were performed before
the algorithm terminated due to a lack of further progress.

Figure 8.1(a) shows the progress made by PITA on the training data in terms of
codelength savings per round. As can be seen, the PITA algorithm achieves substantial
reduction in the codelength required to express the data set (recall that a reduction in
codelength is equivalent to an increase in the log likelihood). Before PITA modeling
is applied, the total codelength of the data set is 2.37 · 106. After 2200 PITA rounds,
the codelength has been reduced to 1.78 · 106, for a net savings of 5.9 · 105, or about
25%. Note that the base codelength of 2.37 · 106 is achieved using the bigram models.

Figure 8.1(a) shows two similar curves. The solid blue curve shows the codelength
savings achieved on the “real” data {Xk}. The green dotted curve describes the code-
length savings achieved on the fine-grained data outcomes Zk = {Xk, Y k}. Evidently,
the codelength savings for the original data set is strictly larger than the codelength
savings for the fine-grain data set. This confirms the intuition that all savings reported
on the fine-grain data {Zk} actually comes from the real data {Xk} and not from the
auxiliary data set {Y k}.

Figure 8.1(b) shows the discrepancy between the savings on the fine grain dataset
{Zk} and the savings on the real data set {Xk} for each round. The curve fluctuates
noisily around zero, indicating that in some rounds the predicted fine-grain savings are
greater than the real achieved savings, and sometimes the opposite is true. On aver-
age, the fine-grain score underpredicts the real savings, but only slightly: the average
discrepancy is 17.62 bits.

Figure 8.1(c) illustrates the generalization ability of the PITA model. The graph
shows the codelength in bits per outcome for each book, for both the training data
(“little”) and the test data. If overfitting were a problem, the curves corresponding to
the test data would go down at the beginning, and then bottom out and start rising
again. As can be seen, this does not happen: the codelength for the test data decreases
monotonically as the number of PITA layers increases.

Further evidence of the generalization ability of the PITA model is shown in Fig-
ure 8.1(d). The blue dotted curve in the graph corresponds to a set of nonsense words.
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These words are random sequences of letters generated by sampling from the bigram
models (some examples of these generated words are shown in Section 8.4.1 below).
As the graph shows, as the training proceeds, the PITA model assigns higher and higher
codelength to the nonsense words. The green solid curve shows the codelength re-
quired for a set of English words that were not part of the training data. As can be
seen, the green curve decreases monotonically with the number of PITA rounds, indi-
cating again that overfitting is not a problem. Note that the increasingly wide gap in
the codelength required for nonsense words versus real English words indicates that
the model can be used to discriminate between the two.

8.4.1 Sampled Words

One way to assess the quality of a model is to sample from it, and then compare the
sampled data to the real data. If the model is good, the sample data should “look like”
the real data. In the present case, we can judge the quality of the model by examining
the similarity between the generated words and real English words.

To generate a word, one starts by sampling from the initial model distribution
Q(x|∅). The resulting outcome then becomes the context for the next step. Thus if
the outcome from the first sample is ‘d’, then on the second step we sample from
Q(x|c =“d”). This is continued until the special word-ending character is selected.

The following words are generated by sampling from the bigram model:

a abangivesery ad allars ambed amyorsagichou an and anendouathin anth
ar as at ate atompasey averean cath ce d dea dr e ed eeaind eld enerd ens er
evedof fod fre g gand gho gisponeshe greastoreta har has haspy he heico
ho ig iginse ill ilyo in ind io is ite iter itwat ju k le lene lilollind lliche llkee
ly mang me mee mpichmm n nd nder ng ngobou nif nl noved o ond onghe
oounin oreengst otaserethe oua ptrathe r rd re reed reroved sern sinttlof
suikngmm t tato tcho te th the toungsshes ver wit y ythe

There are several problems with the above word list. One is that there are too many
long words: words of length 10, 11, or above are common. At the same time, there are
several single letter words like “r” and “k”. These words violate a basic rule of English
morphology, which is that all words must have a vowel. Another problem is that several
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words have long sequences of consonants such as “mpichmm” and “suikngmm”. Long
sequences of consonants such as these words contain are rare in English.

The following words are generated by sampling from the PITA+bigram models:

a ally anctyough and andsaid anot as aslatay astect be beeany been bott
bout but camed chave comuperain deas dook ed eveny fel filear firgut for
fromed gat gin give givesed got ha hard he hef her heree hilpte hoce hof
ierty imber in it jor like lo lome lost mader mare mise moread od of om
ome onertelf our out over owd pass put qu rown says seectusier seeked
she shim so soomereand sse such tail the thingse tite to tor tre tro uf ughe
umily upeeperlyses upoid was wat we were wers whith wird wirt with wor

This list appears to be a substantial improvement over the bigram-only models.
The length of the words is about right, there are no single-consonant words, and there
are no words with long consonant sequences. The list includes many actual English
words such as “like”, “lost”, and “mare”. Many of the other words are very close to real
English, such as “bott”, “mader”, “rown”, and “seeked” (which would be the past tense
of “to seek” if not for the irregular form “sought”). Of course, the PITA model is not
perfect. For example, the word “beeany” contains the sequence “eea”, which is very
rare in English. Some of the long words such as “upeeperlyses” and “soomereand”
seem very strange.

8.5 Summary

This chapter discussed an application of the PITA algorithm to the problem of mod-
eling word morphology. The application mostly followed the standard PITA recipe:
find a database, define the outcomes and contexts, write down a set of context func-
tions, and go. The application made use of the layering property of PITA by using
bigrams for the initial models. The results section showed that the algorithm could
obtain substantially improved models without overfitting.

The main points of interest of this chapter are the use of two special techniques:
outcome reordering and variable-width PIT histogram updates. The outcome reorder-
ing method is necessary to allow the algorithm to work for distributions with non-
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numeric outcomes. Some PIT distributions have randomness deficiencies that are in-
visible when viewed in a standard 2-bin histogram. The variable-width histogram
scheme allows the algorithm to search for randomness deficiencies using 32-bin his-
tograms, but avoids excessive complexity by collapsing the large histograms into vari-
able width 2-bin histograms to perform model ensemble updates. The results of the
chapter show that these techniques work.

Another important point of this chapter was the confirmation that the fine-graining
idea of Section 3.11.1 works. Let us revisit the argument in light of the evidence in
Figures 8.1(a) and 8.1(b). The fine-graining idea is to select PIT values based on a
set of fine-grained outcomes Zk = {Xk, Y k} instead of the original set of outcomes
{Xk}. This strongly reduces the effect of the Bin Overlap problem, meaning that the
histogram KLD scores are very accurate predictions of the codelength savings that
will be achieved on the joint data set Zk. The argument is that since the set of {Y k} is
random, codelength savings predictions made for the {Zk} must really correspond to
savings on the {Xk} data. The result shown in Figure 8.1(b) shows that while the fine-
grained savings prediction is not exact, it is not systematically biased. Figure 8.1(a)
lends further support to the argument, by showing that the savings achieved on the
{Zk} is nearly equal to the savings achieved on the real data {Xk}.

This chapter also demonstrated a technique for qualitative model assessment. This
was to sample from the model, and then compare the sampled data to real data. In
this case the real data are English words, and the sampled data are invented words
like “astect”, “rown”, and “beeany”. The fact that the PITA+bigram model produces
generated words that are quite similar to real English words is a further confirmation
of the quality of the model.

An interesting point, more strongly emphasized in Chapter 9, is that the PITA mod-
els are quite complex, but are justified by the codelength savings they achieve. As
shown in Figure 8.1(a), the PITA model saves about 5.9 · 105 bits on the training data,
compared to the pure bigram models. In comparison, a conservative estimate of the
complexity of the model is about 2200 · 42 ≈ 9.2 · 104 bits. This is actually quite large
compared to the models used in most machine learning research, where small data sets
require the use of minimally complex models. We are able to justify the use of such a
complex model because we are attempting to model the raw data (in this case, words)
as opposed to a set of labels.
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(a) (b)

(c) (d)

Figure 8.1: Figure (a) shows the total codelength savings achieved by PITA for both
the coarse-grained outcomes {Xk} and fine-grained outcomes {Zk}. Figure (b) shows
the discrepancy between the codelength savings achieved on the fine-grain data {Zk}
and the savings achieved on the real data {Xk}. Figure (c) shows the codelength in bits
per outcome required for each of the books. Figure (d) shows the codelength in bits per
outcome required for a batch of nonsense words, compared to a batch of real English
words that were not observed in the training data. The x-axis for all four graphs is the
number of PITA rounds. See text for discussion.
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Chapter 9

PIT Analysis of Speech Data

9.1 Introduction

This chapter discusses the application of the PITA idea to the problem of speech mod-
eling. A speech signal, and sound in general, is just a time series sequence of samples.
The problem of speech modeling is just the problem of predicting, or compressing, this
time series.

Statistical methods have recently become very popular in the speech processing
field [Picone et al. (1993); Sohn et al. (1999)]. A central goal of this research is to
model the relationship between a sound segment and a label, which designates whether
or nor the segment contains speech. If this relationship can be learned well, then the
model can be used to determine if a newly presented segment contains speech or not.
This is called the Voice Activity Detection (VAD) problem. VAD is a close cousin of
several well-studied problems in computer vision and machine learning such as face
detection and handwritten digit recognition.

Instead of modeling the relationship between a sound segment and a label, the goal
of the research in this chapter is to model speech itself. This research topic is not as
popular as VAD, but there is some previous work on it [Davenport Jr (1952); Gazor
& Zhang (2003b); Richards (1964)]. This previous research adopts the perspective
of traditional statistics, and assumes that speech can be described well using a simple
model. In contrast, our approach is to use complex models to describe speech. We
show that when attempting to model raw speech data, complex models can achieve
much better performance without overfitting.
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An interesting point is made in this chapter about the use and justification of com-
plex models. The main lesson of statistical learning is that, in order to avoid overfit-
ting, one must avoid the use of complex models in low-data regime problems [Rissanen
(1978); Vapnik (1998)]. However, when attempting to model raw speech data, an enor-
mous quantity of data is available, justifying the use of highly complex models. The
speech database used in this chapter has a baseline information content of more than
4 · 108 bits. We demonstrate that a model requiring about 2 · 106 bits to encode (larger
by far than the models used in traditional machine learning applications) can be used
to save over 8 · 107 bits when encoding the speech data.

In addition to the VAD problem, another potential application of the research dis-
cussed in this chapter is for lossless compression of speech data. This application
can be achieved because our method models the entire speech signal. Other methods
model an extracted feature vector rather than the speech signal itself, meaning that they
cannot be used for lossless compression.

9.2 Background on Speech Processing

One standard approach to the VAD problem involves the use of binary state Hidden
Markov Models [Cho & Kondoz (2001); Sohn et al. (1999)]. In these models, one
state corresponds to the presence of speech and the other corresponds to non-speech.
Given a trained HMM and a new sound segment, one runs the Viterbi algorithm, which
infers the most probable state trajectory. This state trajectory is then used as the guess
about what sections of the sound segment contain speech.

The binary state HMM strategy requires the solution of many technical problems,
such as the clipping problem and the hangover problem [Sohn et al. (1999)]. These
problems basically involve the fact that the HMM states tend to have too much inertia:
they resist transitioning from speech to non-speech or vice versa. Another important
question is how to perform online noise parameter estimation, so that the VAD system
can adapt to the noise present within a single episode [Fujimoto & Ishizuka (2008);
Fujimoto & Nakamura (2005)] If the noise parameters can be successfully estimated,
subsequent detection rates are greatly enhanced.

Another critical requirement for successful HMM-based VAD is to find good obser-
vation probability models QS(O) and QN(O). These are estimates of the probability
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of sound observation O in the speech state (S) and the noise state (N ). Note that if
very good models QS(O) and QN(O) could be found, they would constitute a com-
plete solution to the VAD problem. However, obtaining good observation models is a
difficult problem.

The dominant strategy for finding QS(O) and QN(O) is to search for good speech
features1. Instead of modeling the probability of the full sound segment O, we apply
some feature function F and model the probability of the result. Thus the models are
now of the form Q(F (O)). Some commonly used feature functions are the funda-
mental frequency, the power, and the cepstrum transform [Picone et al. (1993)]. The
motivating belief is that if good features can be found, then the models QS(F (O)) and
QN(F (O)) will become very simple and distinct. In other words, a value of a good
speech feature function should be very large when speech is active, and very small
otherwise. Thus, most research builds the observation models by combining “smart”
features with simple statistical models such as the multivariate Gaussian [Ishizuka &
Kato (2006); Nemer et al. (2001)].

The work of [Gazor & Zhang (2003b)] takes the opposite approach. These au-
thors searched for “smart” statistical models, and modeled the sound observations O
directly (i.e. no feature functions were used). They found that Laplacian models were
a much better fit to the speech data than the often-used Gaussian models. In later work,
they connected their improved Laplacian speech model to an HMM-based VAD sys-
tem, and showed that the improved model achieved significantly increased detection
rates [Gazor & Zhang (2003a)].

In this research, we propose to take this idea a step further. Like [Gazor & Zhang
(2003b)], we attempt to model sound observations O directly, without using any fea-
ture functions. Instead, we attempt to obtain good models QS(O) and QN(O) by
constructing complex models using the PITA algorithm. We see no reason to believe
that speech follows any kind of simple distribution such as the Laplacian or Gaussian.
Since a large amount of data is available, a complex model can be used without risk
of overfitting. This belief is vindicated by our findings, which show that the complex
PITA models provide substantially better performance than the optimal Laplacians,
and this improved performance generalizes to the test data.

1Note that the use of the word “feature” in speech processing is slightly different from the use in
this thesis. In this document, “feature” is just another word for “context function”.
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9.3 Adapting the PITA Algorithm for Speech Modeling

The goal of this work is to obtain strong models QS(O), the probability of an sound
observation O given that speech is occurring. Each sound episode is broken up into
non-overlapping windows containing D samples. The Discrete Cosine Transform is
then applied to the window, resulting in D DCT coefficients. These coefficients be-
come theX data used in the PITA algorithm. Thus the sound windowOt is transformed
into a vector Xt within elements Xd

t . A simple process is used to convert Xd
t into Xk

data.
The contexts C required for the PITA algorithm are simply the histories of the

sound data at previous time steps: Ct = {Xt−1, Xt−2 . . .}. The dependence of the X
on the context Ck will be mediated by the set of context functions W discussed below.

An important point is that we actually construct D separate PITA models, one
corresponding to each DCT coefficient. This means that there are D versions of the
PITA algorithm running in parallel. Note that one round of φ-statistics logging for
all D processes can be done using a single database traversal. So running T learning
rounds for D models, requires only T database traversals, and not D · T . The training
process for each coefficient model draws from the same set of context functions W, but
may make different choices for the optimal tests w∗t . Note that the context information
used by the dth model is not restricted to Xd

t−1, X
d
t−2 . . .. For example, the model for

d = 5 may use context functions that refer to X48
t−1.

The statistical tests W used in this work are shown below. While in principle these
functions can depend on the history in arbitrary ways, in this work we used functions
that depend only on the previous time window Xt−1. Several of these tests are very
simple functions of the DCT coefficients in the previous time window. We also used a
set of Mel-frequency Cepstral Coefficients and the related audio spectrum and power
spectrum features. These features were generated using the “melfcc” command of the
RastaMat toolbox for Matlab distributed by Ellis (2005), using 24 Cepstrum coeffi-
cients and 24 power bands. These were calculated using non-overlapping windows.
The context functions, with the associated parameters, are shown below:

• ALLSMALL(T ): true if |Xd
t−1| < T for all d.

• PREVCOEF(d, Tmin, Tmax): true if Tmin < Xd
t−1 < Tmax.
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• CEPSTRA:(N, T ): true if the N th Cepstra coefficient was greater than T .

• AUDIO SPECTRUM(N, T ): true if theN th audio spectrum coefficient was greater
than T .

• POWER SPECTRUM(N, T ): true if theN th power spectrum coefficient was greater
than T .

The various threshold parameters T, Tmin, Tmax, for the tests were chosen to roughly
span the response range of the various functions on the training data. The functions
in the above list are all binary context functions. These were used in combination
with the 4-bin PIT histograms. In addition to these, a Shifted Prediction Laplacian
Transformation of Chapter 4 was used, based on the following simple predictor::

f(Ct) =
Xd
t−1 −Xmin

Xmax −Xmin

(9.1)

Where Xmin, Xmax are the minimum and maximum values that the DCT coeffi-
cients are allowed to take.

As noted above, we used double Laplacians as the initial models in the PITA al-
gorithm. The double Laplacian depends on two parameters, the mean µ and the scale
parameter b. Optimal values for these parameters were calculated from the training
data. Separate µd, bd parameters were used for each model Qd

S .

9.4 Experimental Results

9.4.1 Data Sources and Pre-processing

For training data, we used 1000 files from the training section of the TIMIT database
[Fisher et al. (1986)]. The stream of samples was truncated so that its length would be
equal to an integral multiple of 160. The stream was then partitioned into 10 millisec-
ond windows, each of which contained 160 samples. The discrete cosine transform was
applied to each of these windows, and coefficients C such that |C| > Cmax = 2 · 105

were reduced such that |C| = Cmax. The test data was 100 files from the test section of
TIMIT, preprocessed in the same way. For evaluation purposes we also use a package
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of noise data. This was street noise, segmented out of the CENSREC-1-C database1.
The noise data was transformed into DCT coefficients and scaled so that the each DCT
coefficient had the same variance as the speech training data.

9.4.2 Codelength Reduction

Figure 9.1 shows the progress achieved by the training phase, measured by the code-
length savings achieved as a function of the number of PITA rounds. As is typical of
learning curves the start of the process shows rapid progress, after which improvement
starts to slow. Note that the word “codelength” refers to the negative log-likelihood of
the data given the model:

∑
k

− log2QS(Xk|Ck) (9.2)

So that a codelength savings is equivalent to achieving an increase in the log-
likelihood of the data given the model. Also, the savings shown in Figure 9.1 are
measured relative to the initial double Laplacian models. Thus the PITA-enhanced
models achieve substantially improved performance compared to the Laplacian.

Figure 9.2 illustrates the generalization power of the model obtained by the train-
ing algorithm. The graph shows the codelength progress of the unseen test data as a
function of the number of PITA rounds. As can be seen, the codelength of the test
data decreases monotonically as the layer index increases. This demonstrates that the
model has not overfit the data. If overfitting were a problem, the codelength of the test
data would decrease at the outset, but then reverse course and begin to increase. The
fact that this does not occur indicates that overfitting is not a problem here. Note that
Figure 9.1 shows codelength savings, while Figure 9.2 shows total codelength.

Figure 9.2 also charts the codelength assigned by the model to the package of
noise data. The large gap between the codelength of the noise data and the speech
data implies that the model can be used in conjunction with a likelihood ratio test to
discriminate between noise and speech. Oddly, the codelength of the noise data peaks
around the test index #10, and then decreases slightly after that.

1http://sp.shinshu-u.ac.jp/CENSREC/
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Figure 9.1: Codelength progress achieved by the learning algorithm on the training
data. The dotted horizontal line at about 6.5 · 107 marks a reduction of 15% compared
to the starting codelength achieved by optimal double Laplacian models. The green
dotted line shows the savings achieved on the fine-grain data set Z, while the blue line
shows the savings on the original data X.

The fine-graining trick of Section 3.11.1 is also used, and Figure 9.1 also shows a
comparison of the codelength savings achieved on the fine-grained data set Z and the
original data X. As can be seen, the two curves are very close to one another.

9.5 Summary

This chapter described how the PITA algorithm could be used to model speech data.
The speech modeling application is very well-suited to PITA for several reasons. First,
the number of data outcomes is quite large (Xmax − Xmin = 40000). This means
that the CDF outcome windows are very thin, so the Bin Overlap problem is quite
unimportant. Second, the database is very large, and the data is quite “rich”, so that
complex models are useful, and can be justified without overfitting. Furthermore, the
large size of the dataset means that for most algorithms, the training process will re-
quire huge amounts of computational power (this is particularly true for Maximum
Entropy models, see Chapter 5).

Regarding the justification of complex models, consider the following MDL style
cost-savings analysis of the PITA model. Note the large scale of the Y -axis in Fig-
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Figure 9.2: Plot showing the changes in codelength produced by the model as a func-
tion of the number of PITA rounds. The codelength of the unseen test data declines
monotonically, indicating that overfitting is not a problem.

ure 9.1. At the right end of the graph, the model has achieved savings of more than
8 · 107 bits. A very conservative estimate of the cost of the model is as follows.
In each training round, a new context function is added to each coefficient model.
Thus when the training completes after round 145, the algorithm has added a total of
145 · 160 = 23, 200 context functions w∗t . The information in each function consists of
a test index and 3 histogram expansion parameters. Assume that the expansion param-
eters cost 32 bits a piece; the test index costs log2 |W|≈ 10. Then the total cost of the
model is about 23200 ∗ (3 ∗ 32 + 10) ≈ 2.5 · 106. Thus, while the model is far more
complex than those used in traditional speech modeling research, this complexity is
entirely justified by the MDL principle.

Another point of interest in this chapter was the empirical evidence justifying the
fine-graining trick of Section 3.11.1. In that section, we argued that because the aux-
iliary data set Y is random, all savings reported on the joint data set Z must really
correspond to savings on the real data X. Figure 9.1 supports this argument. As can
be see in the figure, savings achieved on the fine-grain data set is almost exactly equal
to the savings achieved on the real data set. Thus codelength savings predictions made
on the basis of the fine-grain data (where the Bin Overlap problem is insignificant) are
accurate predictions of the codelength savings made on the real data set.
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Chapter 10

PIT Analysis of Motion Capture Data

10.1 Introduction

This chapter describes the application of the PITA algorithm to data obtained using
a motion capture system. A motion capture system records a time series description
of the joint angle configuration of the user’s body as he performs a motion. Since
the human body has many joints, and is capable of many kinds of motions, the data
obtained in this way can be quite rich and complex.

One important question in the field of motion understanding research is how to
recognize or categorize a motion sequence. Here we assume we have a training data
set of motions labeled with categories such as “running”, “walking”, and “jumping”.
Then the task is to recognize the category of some new unseen motion trajectory.

One major obstacle to success in the motion recognition task, noted by [Shimosaka
et al. (2004)], is the difficulty of obtaining motion capture data. This process requires
substantial effort and time on the part of the human subjects and experimenters. There-
fore, when measured by the number of trajectories, the amount of data available is
typically quite small (the experimental results section of this chapter involves 245 tra-
jectories). This obstacle motivates research into ways to extract informative features
from a limited data set. These features should correspond to human intuition and also
achieve good generalization performance [Mori et al. (2004)]. Another way of attack-
ing the problem is to build human prior knowledge about motion into the recognition
system. The issue here is how to express this qualitative knowledge in terms the recog-
nition system can understand [Shimosaka et al. (2004)].
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Another major theme in the motion understanding literature is imitation. An im-
portant goal here is to allow the user to “program” a robot simply by demonstrating a
motion, which the robot then imitates. A key conceptual question is how to transform
the observed human-centric motion into a robot-centric motion that the robot can per-
form. An early work in this area constructed a symbolic description of the observed
motion, and then performed a robotic motion based on the symbolic description [Ku-
niyoshi et al. (1994)]. This approach requires two things: 1) the visual ability to seg-
ment and parse an observed motion in terms of a symbol language and 2) the symbol
language itself. Other research focused on ways to obtain a good motion symbol lan-
guage automatically. The approach of [Kuniyoshi et al. (2003)] involved self-learning.
The robot watched itself performing various actions, and then learned a model of the
relationship between actions and visual patterns. Then this model could be used to
interpret a newly observed motion pattern in terms of the robot’s own motor system.

An important body of work in the field of motion understanding involves the use of
Hidden Markov Models (HMMs). In the approach of [Inamura et al. (2004)], a sym-
bolic language of motion emerged as a result of the HMM learning procedure. The
learned HMM symbols could then be used both to recognize human motions and to
generate such motions on a robot. In another HMM-based approach [Lee & Naka-
mura (2006)], an observed motion is interpreted using a model based on previously
learned motions. Then a new motion is generated using the state sequence inferred
from the observed motion, resulting in an imitated motion that is conditioned on pre-
vious knowledge.

There are two basic approaches to motion recognition. These can be called the
“discriminative” approach and the “generative” (or “descriptive”) approach. In the
discriminative approach, one uses a labeled database of pairs {Ti, Li} where Ti is a
motion trajectory, and Li is the label or category. These pairs are then used as training
data to train a classifier, using an algorithm such as the SVM or AdaBoost. The limita-
tion of this approach is that the number of trajectories is usually very small. This puts
a limit on the complexity of the classifier that can be learned without overfitting.

In the generative approach, one partitions the training data into sets based on the
label Li. Then one uses these sets to learn multiple different models QL(T ) of the
motion data itself. To recognize a new motion Tnew, one simply guesses the label L∗

corresponding to the model that assigns the highest probability to Tnew:
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L∗ = arg max
L

QL(Tnew)

The generative approach is therefore very different in philosophy from the dis-
criminative approach. Importantly, the models QL(T ) constructed in this way can be
much more complex than the discriminative models Q(L|T ), because the trajectory
data contains much more information than the label data.

The HMM is basically a generative model, not a discriminative one, so when taking
an HMM-based approach to motion recognition the generative approach is most often
used. To train a model QL(T ), one invokes the HMM training procedure on the data
subset corresponding to the label L.

One subtle point about the generative approach to recognition is that merely ob-
taining good models QL(T ) is not necessarily sufficient. To be successful it is not only
important that QL(T ) assigns high probability to trajectories with label L, but also that
it assigns low probability to trajectories with some other label L′ 6= L.

The application of this chapter also takes the generative approach to motion recog-
nition. The basic difference is that we use the PITA algorithm to produce models
QL(T ) instead of the HMM. We also use a hybrid scheme, where the PITA algorithm
is layered over initial models {uk} generated by the HMM.

10.2 Adaptation of PITA Algorithm for Motion Data

The motion capture data used in this chapter is presented in the form of a time series
sequence of joint angles. At time t, a D-dimensional joint angle vector Xd

t is reported.
The context Ct used to predict outcome Xd

t includes the joint angle vectors of all
previous timesteps.

One simple approach to modeling the Xd
t data would be to lump all the joint data

together into one batch, and use this batch as training data for PITA. We use a different
approach, which is to split the data into separate batches corresponding to each joint
angle d. Then we run D separate PITA instances, one for each element of the joint
angle vector, resulting in models Qd(x|c). However, all D models use the same shared
set of context information, and the same set of context functions W. Thus the model
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Q5(x|c) may depend somehow on the value of joint angle d = 38. From an implemen-
tation standpoint, this makes the learning process more efficient, because the logging
for all D models can be done with one database traversal per PITA round.

The data used in the modeling process comes in packages of multiple trajectories.
Thus, in general we can write Xd

u,t, where u indexes trajectories. The data outcomes
Xd
u,t are transformed into a batch {Xk}d used to train the dth PITA model using a basi-

cally uninteresting process. The important point is that for a data set {Xk}, there will
be several k indices corresponding to t = 1 timesteps for which the context information
will be empty (Ck = ∅).

For the results discussed below relating to standalone PITA, uniform initial models
uk(x) = 1

200
were used (in the preprocessing step, the data is quantized into 200 bins).

For the hybrid HMM+PITA case, the output of the trained HMM was used for the
initial models {uk}. The method used to obtain initial models from the HMMs is
discussed below.

10.2.1 Context Functions

The list below describes the context functions used in the current application. The
items marked “SPLT” indicate that the Shifted Prediction Laplacian Transformation
described in Chapter 4 was used. The functions marked “BCF” indicate binary context
functions, used in conjunction with 4-bin histograms. For the threshold parameters
T, T0, T1 mentioned, the following set of values was used: Ti = 20i, 1 ≤ i ≤ 9. If
the context function refers to values k − 1 or k − 2 but these values are not available
because the k is near the beginning of a trajectory, a “null” prediction is reported.

• Basic SPLT (m): predict f(Ck) =
Xm

k−1

200
.

• Linear Interpolation SPLT (m): predict f(Ck) = 2
Xm

k−1

200
− Xm

k−2

200
.

• Threshold BCF (m,T, I): f(Ck) = 1 if sign(Xm
k−1 − T ) = I , where I = ±1

and T is a threshold.

• Double Threshold BCF (m,n, T0, T1, ◦): f(Ck) = 1 if
(Xm

k−1 < T0) ◦ (Xn
k−1 < T1), where T0, T1 are thresholds and ◦ is a parameter

denoting one of the four possible ways to combine two boolean values.
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• Window BCF (m,T0, T1): f(Ck) = 1 if T0 < Xm
k−1 < T1, where T0, T1 are

thresholds.

• Time Lag SPLT/BCF (∆, f0): Predict f(Ck) = f0(Ck−∆), where f0 is some
other context function/predictor listed above, and ∆ ∈ {2, 3, 4}.

As is generally the case in applications mentioned in this research, not much effort
was expended attempting to find an ideal set of context functions. It is very likely that
putting more time and thought into developing better context functions would provide
better results. However, as we show below, the above list provides quite good results.

10.3 Hidden Markov Models

In this section we give a very brief description of the HMM idea, and refer the inter-
ested reader to the references [Bilmes (1998); Rabiner (1989)].

A basic Markov Model describes a process that transitions through a discrete num-
ber of states. At each time step, it potentially moves from one state to another. The
“Markov” property means that the probability of a transition depends only on the cur-
rent state. In a Hidden Markov Model, the state of the system is unobserved. Instead,
the process is assumed to emit symbols or observations. Like the transition probabili-
ties, the observation probabilities depend only on the current state.

Notationally, an HMM is defined by a five-tuple {S,Π, A,K,B}. There are Q =

|S| states S = {s1, s2, . . . , sQ}. Π is a Q-element distribution giving the initial proba-
bility of the process starting in a given state. A is aQ×Qmatrix giving the probability
of transitioning from one state to another. The set K denotes the observations that the
process emits, while B is a table or function giving the probability of the process emit-
ting a given observation in a given state:

B(o, s) = p(Ot = o|St = s)

Where St is the state of the process, and Ot is the observation recorded at timestep
t. If the set K is countable and small, then B can take the form of a |K| × Q matrix.
In the current research, and as is typical in the HMM-based motion literature, the
observations correspond toD-dimensional joint angle vectors. Therefore |K| ∝ expD
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and so representing B as a matrix will require far too much memory. Instead, B is
represented in terms of a set of state-conditional means and variances µs,Σs. Then we
can write B(o, s) as a Gaussian distribution:

B(o, s) = p(Ot = o|St = s) = N(Ot, µs,Σs)

The joint angle observation Ot is a D-dimensional vector, as is the state mean
vector µs. In principle Σs is a D ×D covariance matrix. However, it is quite difficult
to learn full covariance matrices effectively, and doing so tends to lead to overfitting,
since the matrices are large. For these reasons, diagonal covariance matrices are used
in this work.

To increase the expressive power of the model without increasing its complexity
by too much, a mixture of Gaussians can be used for the observation probabilities.
Now instead of having a single Gaussian {µs,Σs} for each state we have M Gaus-
sians {µs,m,Σs,m}. There is also a mixture weight matrix Ws,m, normalized so that∑

mWs,m = 1. The probability of an observation becomes:

p(Ot|St = s) =
M∑
m=1

Ws,mN(Ot, µs,m,Σs,m) (10.1)

For an HMM with D-dimensional observation vectors, Q hidden states, and M

mixture components, the total number of parameters is:

Q2 +MQD +MQD +MQ

Where the terms refer to the transitition matrix, the means µs,m, the diagonal co-
variances Σs,m, and the mixture matrixWs,m. In comparison, the number of parameters
for an HMM with single Gaussian (no mixtures) but full covariance matrices is:

Q2 +QD +
1

2
QD(D − 1)

For this research, the number of hidden states was chosen to be Q = 16 and the
number of mixture components was chosen to be M = 6. These values were chosen
as the result of a preliminary analysis based on an AIC-style comparison of achieved
log-likelihoods and number of parameters. For these choices of M and Q along with
D = 53, the mixture component based HMM uses 10528 parameters while the full
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covariance HMM uses 23152 parameters. So by using mixtures instead of full co-
variance, we can substantially reduce the complexity of the model. These parameter
choices seem consistent with standard choices made in the HMM motion understand-
ing literature [Kulic et al. (2007)].

The process of obtaining real probability distributions from the Guassian models is
somewhat subtle due to the issue of normalization. Simply calculating the value of the
Gaussian function at many points (Matlab “normpdf” command) will not in general
yield a normalized distribution. In fact it is possible that for some points the value
of the Gaussian is larger than one. When using the HMM for motion recognition,
the normalization issue does not matter very much. This is because we are comparing
unnormalized probabilities from modelA to unnormalized probabilities from modelB.
However, in order to layer the PITA algorithm over the HMM models, it is necessary
to produce legitimate probability distributions for the observations. This is discussed
in the next section.

To train the HMM, the standard Expectation-Maximization algorithm was used.
The EM algorithm was terminated when the relative improvement in log-likelihood
fell below 10−3 per round. The HMM toolbox for Matlab by [Murphy (2005)] was
used for almost all the HMM-related tasks discussed in this research, including the
EM algorithm and the Forward-Backward algorithm. In particular the motion recogni-
tion results for the standalone HMM were obtained using only standard software and
algorithms. The only HMM-related component developed specially for this research
was the small component required to produce normalized initial models for the hybrid
PITA+HMM scheme.

10.3.1 Real Distributions from HMM

In the experimental section below we report results for a hybrid model, generated by
layering PITA over the models provided by the HMM. Obtaining initial models {uk}
from the HMM is easy in principle, but in practice requires some care.

The key property of the HMM is that it supports efficient inference of the state
occupation probabilities given the observations. That is to say, given a sequence of
observations O1, O2, . . . Ot−1 we can easily calculate the probability p(s|Ot−1 . . . O1)
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that the process is currently in state s. This is done using a simple calculation called
the “forward” algorithm.

By combining the state occupation probability obtained using the forward algo-
rithm with the observation models p(o|s), we can easily find the implied probability
distribution for a given observation:

p(Ot|Ot−1, . . . O1) =
∑
s∈S

p(Ot|s)p(s|Ot−1 . . . O1)

These distributions are then used as the initial models {uk} in PITA. Note how-
ever that some care must be taken to ensure that the distributions are normalized. The
Gaussian function is normalized when integrated from {−∞,∞}, but we are using a
quantized outcome spaceO ∈ [1, 200]. To produce normalized distributions, a normal-
ization factor is computed:

Z =
200∑
o=1

p(o|s)

Where p(o|s) is the standard Gaussian based on µs,m and Σs,m. Then the normal-
ized probabilities p′(o|S) = Z−1p(o|S) were used.

10.4 Experimental Results

10.4.1 Data Sources and Preprocessing

We used the CMU Graphics Lab Motion Capture Database1 as source data for this ex-
periment. Unfortunately the motion sequences included in this database are not clearly
categorized. Rather each trajectory is annotated with a qualitative description of the
type of motion it contains. We identified 13 motion categories that could be unambigu-
ously determined from the qualitative descriptions. These 13 categories included 245
trajectories.

The data files are represented as large sequences of joint angles recorded by the
motion capture system. The following preprocessing was performed. First, the infor-
mation corresponding to the base X/Y/Z position was discarded. Then, the minimum

1Available online at http://mocap.cs.cmu.edu/
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and maximum values for a given sensor reading were found by scanning the entire
database (all categories). Some sensors reported very small variation over the entire
database; these sensors were discarded. That left 53 remaining sensor values with as-
sociated minimum and maximum values. The sensor readings were then quantized
according to the formula:

x =

⌈
200

(x− xmin)

(xmax − xmin)

⌉
(10.2)

This ensures that {Xk} data for all sensor readings was distributed in the range
[1, 200]. Note that all three learning schemes (HMM, PITA, Hybrid) use the same set
of preprocessed data.

The original data is made up of a relatively small number (245) of relatively large
trajectories. Results for this version of the problem are given below, but it is somewhat
difficult to make good comparisons between techniques due to the small number of
samples. We also study another version of the problem in which the trajectories were
split into subsequences of length T = 50. This has the effect of making the recognition
problem harder, and of increasing the total number of trajectories. This version of the
problem could correspond to applications where it is necessary recognize motions such
as falling, seizures, or sudden violent activity from a short number of motion frames.

The following cross-validation procedure was used to separate the data into train-
ing and testing sets. Each category was divided into three partitions A,B,C. Then the
train/test process was run three times, with one subset being used for testing and the
other two used for training. So the second cross-validation round uses subsets A + C

as the training data and subset B as the test data. When doing the recognition test, the
competitor models trained using the same subsets were used. So for recognizing sub-
set B, the models trained using subsets A,C from each category (“soccer”, “basket”,
“signals”, etc) were used to assign likelihoods to the subsequences in B.

Table 10.1 shows the results of the basic version of the recognition test in which the
trajectories were not split. We see that PITA correctly recognizes 17 more trajectories
than the HMM, correspond to a 7% difference in error rate (29% vs. 22%). On this
version of the problem, the hybrid model is less successful, recognizing 8 fewer tra-
jectories than the HMM. This is probably because the hybrid model is more complex,
and thus tends to overfit when trained on a small number of trajectories.
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Table 10.2 shows the results of the recognition test on the split trajectory version
of the problem. As can be seen from the table, both PITA and the hybrid model show
very strong performance relative to the standalone HMM. When measured in terms of
total error on the entire database, standalone PITA cuts the error rate in half compared
to the HMM, and the hybrid does even better. Total error rates are 75% for the HMM,
47% for standalone PITA, and 38% for the hybrid. However, the total over the entire
data set may be an inappropriate measure, since it biases the analysis toward the larger
data sets, where the PITA and hybrid models have an advantage. If one counts only the
number of domains, then the score for HMM vs. PITA is 6-7 in favor of PITA. For the
HMM vs. hybrid, the score is 5-8 in favor of the hybrid.

Figure 10.2 shows a comparison of the codelengths achieved by the various models
on both the training and test data sets. In every case, standalone PITA gives the best
codelengths, followed by the hybrid. Furthermore, since the codelengths assigned to
the unseen test data are not much greater than those assigned to the training data, it
appears that the standalone PITA models are not particularly vulnerable to overfitting.
In contrast, the hybrid model is more vulnerable to overfitting, probably because it is
more complex than the other models.

Figure 10.1 shows an interesting visual result related to the distribution of PIT val-
ues. These grids show frequency data related to the distribution of consecutive PIT
values for four different models (flat uniform, HMM alone, PITA alone, and hybrid).
Given a pair of data outcomes Xd

t−1, X
d
t , the corresponding PIT values φdt−1, φ

d
t are

calculated based on the models. Then a frequency count is logged for the pair, cor-
responding to its location in the [0, 1]2 plane. Obviously there will be a very strong
correlation between Xd

t−1 and Xd
t . This is illustrated in Figure 10.1(a), which uses a

uniform model so that φdt ∝ Xd
t . On the other hand, an ideal model should produce

PIT values that are evenly distributed on [0, 1]2. Standalone PITA produces the most
uniform grid, followed by the hybrid model and then the HMM.

10.5 Summary

In this chapter we showed how the PITA algorithm could be used to build models of
data obtained from a motion capture system. The process was a relatively straightfor-
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Table 10.1: Number of trajectories categorized correctly by each modeling technique,
for the unsplit problem.

Domain Total HMM PITA PITA+HMM
soccer 6 0 5 0

playground 11 11 10 11
basket 12 8 11 8

cockrobin 14 9 4 9
teapot 16 1 9 0
walk 18 10 14 10
jump 18 16 17 14

signals 19 5 6 7
dance 21 15 16 14
alaska 23 21 19 21

sit 23 17 16 13
run 27 24 27 22

uneven 37 37 37 37
total 245 174 191 166

ward application of the recipe for using PITA: identify the data outcomes and contexts,
write down a set of context functions, and go.

The experimental results show that the resulting PITA models are very good at the
descriptive task. That is to say, the models assign very high probability (low code-
length) to the observed data. Thus, if the goal is purely to describe or compress a
motion data set, the PITA algorithm should be preferred to the HMM.

PITA also does very well in comparison to the HMM on the motion recognition
task. PITA achieves significantly better recognition rates on both the split and unsplit
version of the recognition task. A hybrid model built by layering the PITA models over
the HMM achieves even better performance for the split version of the task.

The PITA algorithm also has several practical advantages with respect to the HMM.
One advantage is its simplified training process. The HMM training process is based
on Expectation Maximization, and requires an initial guess for the parameter values
(Gaussian mean/variance, mixture matrix, transition matrix, and initial state distribu-
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Table 10.2: Number of trajectories categorized correctly by each modeling technique,
for the T = 50 split version of the problem.

Domain Total HMM PITA PITA+HMM
soccer 64 56 22 43

run 73 72 70 71
basket 148 141 108 135
walk 149 98 87 99
jump 157 126 54 118
dance 355 153 149 257
teapot 681 240 427 117

playground 835 145 456 613
sit 1064 219 567 679

signals 1498 381 581 390
cockrobin 2050 112 640 898

uneven 2857 997 2465 2806
alaska 3003 439 1192 1764
total 12934 3179 6818 7990

tion). The outcome of the training process depends strongly on this initial guess. In
practice, researchers generally run the training process several times with different ini-
tial starting values. This is clearly an awkward solution. The PITA learning process is
much more reliable and does not require any initial guess for the parameters.

Furthermore, to use the HMM one must select values for the Q and M parameters
(number of hidden states and number of mixture components). Selecting the optimal
parameters appears to be more of an art than a science. In contrast, for the PITA algo-
rithm one must select the battery of context functions W. It may seem like developing
W is much more difficult than choosing Q and M . However, the key difference is
that when choosing W there is no strong penalty for making a mistake. If some “bad”
functions are included in W, the PITA algorithm will simply decline to select them. In
contrast a bad choice for Q or M will lead to reduced performance for the HMM.
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(a) (b)

(c) (d)

Figure 10.1: Illustration of correlation between PIT values for the adjacent time steps
for the “basket” data set. Matrix values indicate the log frequency of PIT value pairs,
where a pair is obtained by looking at the PIT values φdt−1, φ

d
t corresponding to ad-

jacent data outcomes Xd
t−1, X

d
t for the same joint angle d. If a perfect model for the

outcome data were used to generate the PIT values, the adjacent PIT values would be
independent and the frequency matrix would be uniform. It can be seen that for this
dataset, PITA (b) gives the best result, followed by the hybrid (d) and the HMM (c).
Note that the numbers indicate frequency log10, so that an box marked 3.0 has ten times
more hits than a box marked 2.0.
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Figure 10.2: Code length comparison bar plot for five motion categories, for different
models on test and train data. The Y -axis shows average bits per timestep, which is
just the average negative log likelihood assigned to a full observation vector by the
model. Uniform models would require 53 · log2(200) ≈ 405 bits per timestep.
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Chapter 11

Conclusion

11.1 AIT View of Statistical Modeling

Historically, most research in statistical modeling has been based on the Maximum
Likelihood Principle of traditional statistics. This thesis demonstrated that a different
perspective is possible. This new perspective, called the AIT view, is based on the idea
that, when encoding a data set using a perfect model of it, the resulting encoded data
should be completely random. If a randomness deficiency is detected in the encoded
data, this indicates that the model is imperfect and provides a way to improve it.

Until now, two important conceptual barriers prevented the AIT view from being
used for statistical modeling. The first was a limited understanding of what kinds of
statistical tests (or context functions) could legitimately be used to detect randomness
deficiencies. This thesis demonstrated that it is possible to use statistical tests based
on either the original form of the data, or some external data source (e.g. in the pattern
recognition problem). The second barrier was simply that bit strings are difficult to
use. The solution to this obstacle is to to represent the encoded data as Probability
Integral Transform values instead of bits. This representation is much easier to work
with, since the number of PIT values does not change. Instead of reducing the number
of PIT values, the modeling process expands the region of the unit interval the PIT
values are allowed to inhabit.

These insights were used to develop a practical algorithm called PITA. However,
it should be emphasized that PITA is only one of many possible algorithms that can
be designed on the basis of the AIT view. The view of traditional statistics has been
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developed for decades, and contains hundreds of methods. The AIT view is just begin-
ning to emerge, but probably contains an equivalent number of methods, the majority
of which are waiting to be discovered.

11.2 PITA Algorithm

The AIT view suggests the following layered, iterative approach to modeling. Start
by transforming the data set into a bit string, using any naı̈ve encoding method. Then
search the bit string for randomness deficiencies. If one is found, exploit it to reencode
(compress) the bit string. Repeat this search and reencode process until no further
randomness deficiencies can be found.

The PITA algorithm uses this search and reencode process, except using PIT val-
ues instead of bit strings. A randomness deficiency in a PIT value sequence can be
detected by constructing a histogram of PIT values. As discussed in Chapter 2, this
PIT histogram can then be used to define a simple model update. This trivial-seeming
update has two powerful properties. First, the update can be applied to an entire en-

semble of models. Second, the codelength savings achieved by applying the update
can be predicted accurately given only the information in the PIT histogram. Thus,
even when there are ten million distinct models describing ten million different data
points, the 8 (or 10, 12, etc) histogram bin counts contain all the information necessary
to define the update and to predict the savings.

Chapter 3 completes the description of the basic PITA algorithm, which uses the
model ensemble update method along with a battery of context functions. In each
training round, every context function is scored by measuring the randomness defi-
ciency it reveals in the encoded data. The context function with the highest score is
selected and used to update the model ensemble and PIT values. The algorithm termi-
nates when no further randomness deficiencies can be detected. The output of PITA
is a complex context-dependent model Q(x|c), which is represented implicitly by the
context functions and histogram data obtained in each round. By using the PIT values
(encoded data) instead of the original data, the hard problems of feature selection and
feature combination are easily solved.

Two thorny technical issues need to be addressed to realize the full potential of
PITA: the problem of non-numeric data and the Bin Overlap problem. Non-numeric
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data is troublesome because PITA depends on the use of model CDFs, and many dif-
ferent CDFs can correspond to the same PDF, depending on the outcome ordering. The
Bin Overlap problem is due to a failure of the key assumption that underlies the code-
length savings calculation. Solutions to these issues are also presented in Chapter 3.

Chapter 4 describes a set of alternative model ensemble updates based on paramet-
ric transformations. The key here is to define transformations for which an optimal
parameter can be calculated from a small set of logged statistics relating to the PIT
values. The most powerful transformation discussed is the Shifted Prediction Lapla-
cian, which depends on a new type of “predictor” context function. If the PIT value
can be predicted accurately, substantial codelength savings can be achieved. This new
type of context function greatly expands the scope of PITA.

A powerful feature of the PITA algorithm is that it can be layered over some other
model. Here, an arbitrary, black-box algorithm is used to initialize the models. The PIT
values are generated using the initial models, and then the PITA algorithm proceeds as
before. No changes to the algorithm are necessary for this to work. Applying PITA in
the layering mode is a “win-win” proposition. If randomness deficiencies are revealed
by the context functions, then the resulting updated models will be better than the
initial models. If no randomness deficiencies are revealed, this provides evidence that
the initial models are very good.

Chapter 5 discusses the relationship between PITA and other methods in machine
learning and statistics, especially Maximum Entropy modeling and Boosting. With
regard to the former, a significant advantage of PITA is its ability to scale up to data
sets that are too large to be held in memory. The optimization methods related to
Maximum Entropy require multiple sums over the entire data set, incurring a huge
computational cost when the data set is large. In contrast, PITA requires only a single
data set traversal to obtain all the statistics necessary both to score the context functions
and to update the models. With regard to boosting, the primary advantage of PITA is
that it produces probability distributions instead of point predictions. This allows PITA
to be used in layering mode, as well as for raw data modeling and data compression
applications.
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11.3 Applications

Five applications of the PITA algorithm were discussed in this thesis. The broad set
of applications demonstrates PITA’s generality. Each application contained a different
insight or lesson.

Chapter 6 discussed an image compression application. This application was ex-
amined first because lossless data compression is a rigorous test. If there were some
critical flaw or error in the logic behind PITA, that flaw would be detected when the
decompressed image failed to match the original image exactly. The compression rates
achieved by PITA were comparable to PNG, a widely used lossless compression for-
mat. This result is not revolutionary, but note that it was achieved using a very simple
set of context functions. A more sophisticated set of context functions should produce
better compression rates.

In Chapter 7 it was shown that PITA can be used for binary pattern classification, a
core problem in machine learning. A slightly modified version of PITA was compared
to AdaBoost, and showed competitive results. On two domains, the modified PITA
algorithm achieved a decisive performance improvement over AdaBoost. The new
algorithm also seemed to achieve consistently better results on the larger domains.

Chapter 8 discussed an application to word morphology modeling. Several aspects
of this problem make it interesting. First, in this domain the layering ability of PITA
was put to good use. Standard bigrams were used for the initial models. The result-
ing PITA-enhanced models achieved much better codelength than the bigram models
alone. Another interesting aspect of this domain is that the outcomes are non-numeric.
The CDF reordering scheme and the variable width histogram scheme were used to
deal with this issue, with successful results.

The speech modeling application of Chapter 9 showed how PITA could be used to
construct highly complex models. The PITA model used for this application required
about 106 bits to encode, but resulted in a savings of more than 8 · 107 bits. This means
that the complexity of the model is justified by the MDL principle, and for this reason
overfitting is not a problem. Furthermore, this highly complex model was constructed
efficiently, due to the fact that PITA requires only one database traversal per round.
This is of crucial importance, since the speech database is too large to fit in memory.
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Chapter 10 presented an application of PITA to the problem of motion modeling
and recognition. In terms of recognition performance, PITA achieved substantially
better results than an HMM-based system. A hybrid scheme, in which PITA updates
were layered on top of an HMM, resulted in even better performance on one version
of the problem. Furthermore, the pure PITA models were much better than the HMMs
in terms of their ability to describe the data (codelength). PITA also seems easier to
use. The HMM requires the user to make difficult choices related to the number of
hidden states and observation models. Also, the EM-based HMM training process can
get trapped in local minima. PITA does not have these problems.

11.4 Future Work

The approach to statistical modeling as a search for randomness deficiencies opens
many doors for future work. PITA is only one of many algorithms that can be de-
fined based on the AIT view. There are many types of randomness deficiencies that
may be present in a bit string or PIT value sequence, and many ways to exploit such
deficiencies when they are found.

More concretely, two important pieces of future work involve addressing limita-
tions in PITA. The first limitation is PITA’s requirement that the user define a set of
context functions W. To some extent, the user can simply define a very large batch
of context functions, and rely on PITA’s feature selection mechanism to choose the
best ones. However, the computational cost of the algorithm scales with the size of
W. Thus, there is a need for automatic methods to search for good context functions.
One possibility is a kind of genetic algorithm where each “phenotype” corresponds to
a context function. By using mutation and selection methods, it may be possible to
evolve powerful context functions from a simple set of primitive operations.

Another limitation of PITA is that it does not contain the ability to represent hidden
abstractions. A very intuitive concept in modeling is the notion of a hidden cause that
produces some observations. For example, in a picture of a face, it is conceptually
useful to think of the raw pixel observations as being caused by the presence of a
“face” abstraction. A major attraction of techniques such as HMMs and graphical
models is the ability to represent hidden abstractions. Thus, another piece of future
work is to develop a modified version of PITA that has this ability as well.
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An interesting possibility is to apply the PITA algorithm to the semi-supervised
learning problem [Zhu (2005)]. In this problem, one has a large quantity of unla-
beled data samples as well as a much smaller set of labeled samples. The goal of
semi-supervised learning is to exploit the large set of unlabeled samples to improve
performance beyond what could normally be achieved using the small labeled set.
PITA could be applied to this problem by first using it to model the raw data. Then
the features chosen by PITA on the raw data modeling phase could be reused for the
supervised learning phase.

The final piece of future work is to develop a theory of the brain based on the AIT
view. Many brain theories have been developed that employ concepts from traditional
statistics and information theory. Most relevant to this thesis is the theory of redun-
dancy reduction [Barlow (2001)]. This idea suggests that the function of the cortex is
to reencode sensory data entering the brain so as to reduce redundancy (i.e. compress
it). This theory is quite attractive, but contains some critical flaws. For one thing, if
the cortex acts to compress the sensory signals as they travel up through higher brain
areas, then higher brain areas should be smaller than lower areas. In fact the opposite
tendency is observed.

In the revised theory of redundancy reduction based on the AIT view, the original
data is the sensory signal, and the set of synaptic weights play the role of the model.
Some neural quantity such as firing rate is identified as the encoded data. When pre-
sented with a sensory signal, the neurons are forced into a narrow region of their full
potential range, in the same way that a particular data outcome forces the PIT values
into a specific region of the unit interval. The size of the confined region depends on
the specific sensory signal and the model (synaptic weights). In this view, the goal of
learning is to expand the aggregate hypervolume of the regions that the “neural PIT
values” are confined to, by adapting to the statistics of the sensory signals. Thus, when
a mature brain is presented with a common sensory signal, the neural PIT values are
allowed to inhabit a relatively large region.

By viewing the neural activities as actual physical quantities, analogous to the po-
sitions and velocities of atoms in an ideal gas, an extremely simple view of learning
becomes possible. Learning is simply the process of maximizing the physical entropy
of the neural PIT values. In classical statistical mechanics, entropy is maximized while
obeying the law of energy conservation. In the present view of learning, entropy is
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maximized while obeying the rule that confines the neural PIT values into a specific
region depending on the sensory signal and the model. If this interpretation is true,
then what is perhaps the most mysterious natural phenomenon known to man - intel-
ligence and learning - is revealed to be nothing more than a special case of the most
basic and ubiquitous physical process of all: entropy maximization.
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Appendix A

Information Theory

This appendix presents a very brief overview of the some of the core concepts of in-
formation theory required to understand the thesis. For a fuller treatment, see [Cover
& Thomas (1991)].

The motivating question of information theory is: given a data set X, how can we
encode X in a digital form using the smallest possible number of bits? In spite of the
very technical nature of this question, the answer turns out to be quite deep.

The central difficulty of the data compression problem is that the number of short
codes is intrinsically limited. For example, there are only 24 = 16 codes of length 4
bits. Thus if there are more than 16 possibles outcomes in the data set, then some of
those outcomes must be assigned codes of length greater than 4 bits. This means that
to achieve good compression (small net codelength), it is necessary to reserve the short
codes for the common outcomes, while assigning long codes to rare outcomes. This
observation immediately raises the question: what is the precise relationship between
the probability of an outcome and the length of the corresponding code? The answer
is given by Shannon’s famous codelength-probability relationship:

L(x) = − log2 P (x) (A.1)

The above equation specifies the lengths of the optimal code. How then can the
code itself be constructed? That is to say, given a model Q(x), how do we transform a
series of outcomes {X1, X2 . . .} into a bit string S that satisfies A.1? This is called the
encoding problem, and it is non-trivial. Fortunately, however, the encoding problem
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has been completely solved. The first method proposed that was guaranteed to achieve
near-optimal codelengths is called Huffman encoding [Huffman (1952)]. The second
method, used in this thesis, is called arithmetic encoding [Rissanen (1976); Witten
et al. (1987)]. The basic advantage of arithmetic encoding over Huffman encoding is
that the latter basically requires the model Q(x) to be pre-specified. Since the applica-
tions of this thesis involve conditional models Q(x|c), and c is constantly changing, it
is difficult to use Huffman encoding.

Given the codelength-probability equivalence relationship, it is natural to define
the entropy:

H(P ) =
∑
x

P (x)L(x) = −
∑
x

P (x) log2 P (x) (A.2)

The entropy of a distribution P (x) is the expected codelength achieved by the
optimal code for P (x). There are several important facts to notice about the entropy.
First, it is a function of the distribution P (x), not the data set X. Second, upper bounds
for the entropy can easily be found. For example, if there are 16 possible outcomes,
then the entropy is as most 4 bits. Generally speaking, the greater the number of
outcomes in the distribution, the larger the entropy.

While the entropy is a fascinating concept, it is not actually very useful in statis-
tical modeling, because the real distribution P (x) is generally unknown. The goal of
statistics is to obtain approximations (or models) Q(x) ≈ P (x) on the basis of the
empirical data set X. In statistics a more useful quantity is the empirical codelength:

N∑
k=1

L(Xk) = −
N∑
k=1

log2Q(Xk) (A.3)

Note that the codelength is formally equivalent to the negative log likelihood. For
this reason, the goal of finding a model that can be used to compress a dataset to the
smallest possible size, is exactly equivalent to the goal of finding a model that assigns
the highest probability to the data (Maximum Likelihood Principle).

Again, in statistics we never know the real distribution P (x). Instead we have
an approximation Q(x). Since Q(x) is imperfect, the codelengths specified by Q(x)

will also be imperfect. The codelength penalty for using imperfect codes based on the
model Q(x) instead of perfect codes based on the real distribution P (x) is:
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D(P ||Q) =
∑
x

P (x)L(x)−
∑
x

P (x)Lq(x)

=
∑
x

P (x) log2

P (x)

Q(x)

The quantity D(P ||Q) is known as the Kullback-Liebler divergence. It is easy to
show that the Kullback-Liebler divergence is always positive. This implies that no
scheme for assigning codelengths to data outcomes can achieve better codelengths on
average than L(x) = − log2 P (x). It is possible to get better codes for certain out-
comes. But by reducing the codelength of some outcomes, it is necessary to increase
the codelength of other outcomes, and this will hurt the overall average.

For the purposes of this thesis information theory contains two key points. The first
is the equivalence between statistical models and compression programs. A compres-
sion program is a bijective mapping XN ↔ S between data outcomes and bit strings.
A compression program can easily be built out of a model Q(x) simply by hooking
it up to an arithmetic encoder. Conversely, any mapping XN ↔ S must implicitly
contain a probability model. The second key point is the idea that a better model leads
to shorter codes, and vice versa.

In the light of these ideas, consider the following argument. Given a model Q(x)

for a data set X, define EQ to be the corresponding compression program. Let S =

EQ(X). Now consider some arbitrary data compression program Z (such as “zip”).
Z is a mapping from bit strings to bit strings: S ↔ S. Assume the compression
program succeeds in compressing S so that S ′ = Z(S) and |S ′| < |S|. Now consider
the function E ′Q = Z(EQ). This is a mapping XN ↔ S, so from the probability-
codelength equivalence idea, E ′Q must implicitly contain a model Q′. Furthermore,
since E ′Q achieves a shorter code than EQ, it must be the case that Q′ is a better model
than Q.

The key assumption above is that the data compression program Z could actually
compress the encoded bit string S. This motivates the question of when in general a bit
string can be compressed. As discussed in Appendix B, a string S can be compressed if
it has a randomness deficiency. This shows that searching for randomness deficiencies
in the string S is equivalent to searching for ways of improving the model Q.
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Appendix B

Algorithmic Information Theory

This appendix presents a very brief overview of some of the core concepts of algo-
rithmic information theory (AIT) necessary to understand the thesis. AIT is a rich
mathematical theory. This thesis uses primarily the mindset developed by AIT and
not the technical apparatus. Interested readers are referred to the text [Li & Vitanyi
(1997)].

In AIT the essential quantity of interest is called the Kolmogorov complexity. The
Kolmogorov complexity of a string S is the length of the smallest possible program pU

that will output S when run on some universal Turing machine U . Initially, it would
appear that the Kolmogorov complexity depends completely on the choice of U . How-
ever, it turns out that if S is long enough, then its Kolmogorov complexity becomes
essentially an absolute quantity. This is because of the universality of computation:
a universal Turing machine U can be made to simulate any other Turing machine A
by using a translation program TUA. Thus given a program pA that generates S on
A, a program pU can be found easily by prepending TUA to pA. The length of TUA
is a constant independent of S, so as S becomes large (and complex) its Kolmogorov
complexity effectively becomes an absolute quantity.

For an intuitive understanding of the meaning of the Kolmogorov complexity, con-
sider the following strings:

• 0000000000000000000000000000000000000000

• 1010101010101010101010101010101010101010
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• 0110101000110100010010111011110110011011

Clearly the first and second strings are nonrandom. One could easily write a pro-
gram that generates these strings, and if they continued on for a million bits, the pro-
gram would be much shorter than strings themselves. Thus the Kolmogorov complex-
ity of the first two strings is much smaller than their actual length. In contrast, the
third string has no discernible structure. It is not possible to write a short program
that outputs this string. Thus, its Kolmogorov complexity is approximately equal to its
length.

The main drawback of the concept of Kolmogorov complexity is that the problem
of calculating it for a given S is uncomputable. The best we can do is to search for a
series of increasingly tight upper bounds. Given some program pU that generates S, if
some program p′U can be found that is substantially shorter than pU and generates pU
as its output, then the Kolmogorov complexity of S cannot be much greater than |p′U |.
This gives a new upper bound on the Kolmogorov complexity of S, and the process
can be repeated by searching for programs that produce p′U .

The Kolmogorov complexity concept is deeply related to the idea of random-
ness [Martin-Löf (1966)]. The key realization is: if a string S is random, then its
Kolmogorov complexity is approximately equal to its length. If on the other hand S
is nonrandom, then its Kolmogorov complexity is substantially smaller than its length.
This is fine, but what does it mean for a string to be nonrandom? A string is nonran-
dom if and only if it contains a randomness deficiency. A randomness deficiency is
observed when a statistical test is applied to a string, and the result deviates substan-
tially from what would be expected if the string were random. One simple example of
a statistical test is to count the frequency of 1’s in the bit string. In a random string,
this frequency should be close to 50%.

A key point is that there are a vast number of different statistical tests that can
be applied to a bit string. In order to be random, the string must satisfy all of these
tests. However, in practice the number of tests that can actually be used is limited by
considerations of computational complexity. For this reason, it is practically impossi-
ble to know if a string is truly random; one can only prove conclusively that a string
is nonrandom. This situation is analogous to the situation in statistical modeling. In
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modeling, given two models Qa(x) and Qb(x), it is possible to decide if Qa is better
than Qb (or vice versa). But it is impossible to know if Qa is the best possible model.

One way of defining a statistical test is to use a binary context function w. Let bi
denote the ith bit in string S, and let S1:i−1 denote the substring of S leading up to bi.
The function w selects a subset of the bits of S:

B0 = {bi : w(S1:i−1) = 0}

B1 = {bi : w(S1:i−1) = 1}

Now for the string S to be random, the number of 1’s in both subsets B0, B1 must
be about 50%. This must be true for every choice of w. Furthermore, this context
function based method is only one way of detecting randomness deficiencies. The
huge variety of options that can be used to search for randomness deficiencies is a
central motivating factor for this thesis.
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Appendix C

Layering Example

The use of PITA in layering mode, where PITA model ensemble updates are applied
on top of some black box model, was mentioned in Section 3.8. This Appendix gives
a more detailed example where layering can be useful.

In some sense, whenever PITA is used, it is used in layering mode. Each PITA
round is basically a new layer laid over the previous model. The first illustration of
the model update idea, in Figure 2.1 of Chapter 2, showed how it could be used to
improve a Gaussian model. However, that simple example may not be compelling.
In that case, it was quite obvious that the data set could not be described well using
a Gaussian. This could be verified simply by plotting the data outcomes against the
Gaussian curve. Furthermore, the improved model obtained using the model ensemble
update was not particularly impressive either, as a better model could be found by
using a simple scheme such as kernel density estimation.

The example presented here uses the same basic process as the updated-Gaussian
one. There is a model that has been optimized to fit a data set (recall that the Gaussian
example used the optimal mean and variance), and the model is used to generate the
PIT values. The uneven distribution of the PIT values indicates that the model is im-
perfect, and so the PIT value histograms are used to update it. The difference is that in
this case both the data and the model are quite complex. The model is a type of Markov
Random Field (MRF) and the data is an image. The MRF assigns a different probabil-
ity distribution to each pixel depending on the values of the neighboring pixels. Thus,
one cannot simply graph the distribution of pixel values and compare this to the model
distribution. One can, however, generate PIT values for each pixel, and then search for
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C.1 Markov Random Field Model

randomness deficiencies in the PIT value distribution. If randomness deficiencies are
found, an improved model can be obtained by applying the model ensemble update.

C.1 Markov Random Field Model

The complex statistical model used in this example is a kind of Markov Random Field
(MRF). This type of model is used widely in computer vision, often for the purpose
of image segmentation [Bouman & Shapiro (1994); Deng & Clausi (2004)]. However,
the point of the example is not to demonstrate a specific way of improving models used
for computer vision. The example illustrates a general problem in statistical modeling:
one has a trained model that produces some log-likelihood value (codelength) on the
data set. The model may be good compared to other models in the same class (e.g.
other MRFs defined by different parameters). But there is no way to tell if the model is
good in absolute terms, since there is no way to tell what the best achievable codelength
is.

The type of MRF used in this example is actually quite similar to an HMM. There
are some number of hidden states, and each hidden state has a different observation
probability distribution associated with it. The main difference between the HMM and
the MRF model used here, is that for the MRF, the probability of a hidden state depends
on not one but two neighboring hidden states. The probability of a hidden state (i, j)

is influenced by the hidden state at positions (i− 1, j) and (i, j − 1):

p(Si,j == s) =
1

Z
exp(−Ui,j(s)) (C.1)

Where Z is a partition function to ensure normalization, and U(·) is an “energy”
function depending on the neighboring values:

Ui,j(s) = β(δ(s, Si−1,j) + δ(s, Si,j−1)) (C.2)

Where β < 0 is a parameter of the model. Thus states s that match their neighbors
are assigned lower energies, which correspond to higher probabilities.

Each hidden state contains a different pixel observation probability, which is a
Gaussian with mean (µs,Σs), where Σs is a diagonal covariance matrix. The full
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distribution for a pixel is found by taking the sum of the observation probabilities,
weighted by the state occupation probabilities:

p(Oi,j == o) =
∑
s

p(o|s)p(Si,j == s|Si−1,j, Si,j−1) (C.3)

Where p(o|s) is a Gaussian with mean µs and covariance Σs.
Note that the probability p(Si,j == s|Si−1,j, Si,j−1) is the state occupation prob-

ability before the pixel “observation” is made. After making the observation, the up-
dated probability is:

p(Si,j == s) =
p(Oi,j == o|s)p(s|Si−1,j, Si,j−1)∑
s′ p(Oi,j == o|s′)p(s′|Si−1,j, Si,j−1)

(C.4)

These updated state occupation probabilities are then used to calculate the state
occupation probability of the neighboring pixel.

C.2 Training the Model

To optimize the MRF for the data set, it is necessary to find good values for the hidden
state Gaussian parameters µs and Σs, and the state influence parameter β. The param-
eters are randomly initialized, and then iteratively improved using the Expectation-
Maximization algorithm as follows:

• Given current parameters µs and Σs, use the inference algorithm to guess the
most likely hidden state ŝi,j for each pixel.

• Given the guess of the hidden states ŝi,j , find the maximum likelihood values for
each state’s Gaussian parameters:

µs = mean{Oi,j : ŝi,j = s}

Σs = var{Oi,j : ŝi,j = s}

• Calculate the optimal state influence parameter β using a binary search.

• Calculate the new log-likelihood corresponding to the updated model.
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C.3 PITA Update

(a) (b)

Figure C.1: Figure (a) shows the Matlab “peppers” image, used as training data in
this example. Figure (b) shows the learning curve produced by using the Expectation-
Maximization algorithm to train the MRF model.

The above loop is repeated until the log-likelihood values converge. This EM algo-
rithm was run on the Matlab “peppers” image shown in Figure C.1(a). The codelength
(negative log likelihood) progress achieved as a function of the number of EM itera-
tions is shown in Figure C.1(b).

C.3 PITA Update

Once the EM algorithm has converged, we have a trained model. As shown in Fig-
ure C.1(b), the model can be used to achieve a codelength of 3.2 · 106 bits. At this
point it is very difficult to know whether the model is good or not. Surely it is better
than the MRF model defined by the initial parameter guess used to initialize the EM
algorithm; that model required about 4.5 · 106 bits to encode the image. It is also better
than a uniform model that would require 384 · 512 · 3 · 8 ≈ 4.7 · 106 bits to encode the
image. But it is very difficult to know whether or not some better model could achieve
an even lower codelength for the image.

PITA ideas can be used to address this question. One way of visualizing the quality
of the model is by looking at the PIT value image. Recall that there is a 1-1 correspon-
dence between PIT values and data outcomes (pixels). Therefore, we can calculate the
PIT values using the MRF model, and then view the PIT values as an image, where
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C.3 PITA Update

(a) (b)

Figure C.2: These images are produced by viewing the PIT values φi,j corresponding
to the original pixelsXi,j . The PIT value image produced by a perfect model should be
completely random. Figure (a) shows the PIT values produced using the trained MRF.
Figure (b) shows the values produced using the updated MRF+PITA model.

each PIT value is in the same position as the corresponding pixel. The PIT value image
generated using the MRF model is shown in Figure C.2(a).

What should this image be expected to look like? The basic idea of the AIT view
of modeling is that if the model is perfect, then the encoded data should be random.
Clearly, the PIT value image shown in Figure C.2(a) is not random. There are obvious
regions, shapes, and edges corresponding to the original positions of the peppers. It
is certainly “more random” than the original image, but not completely random. This
implies that the MRF model is imperfect.

Another way of visualizing the PIT values is by looking at the frequencies of ad-
jacent PIT value pairs, as shown in Figure C.3(a). Each bin shows the log frequency
of neighboring PIT value pairs {φi−1,j, φi,j}. Again, because a perfect model should
produce a random set of PIT values, Figure C.3(a) provides evidence that the model is
imperfect. The grid shows substantial correlation between the neighboring PIT values;
if the model were perfect there would be no such correlation.

Knowing that the model is imperfect provides a motivation to attempt to update it
using the PITA idea. Doing so is not very difficult. In this example we have used four
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C.3 PITA Update

(a) (b)

Figure C.3: These grids show the log frequency of PIT value pairs {φi−1,j, φi,j}.
Figure (a) shows the PIT values produced using the trained MRF, while (b) corresponds
to the updated MRF+PITA model. A perfect model should produce a uniform grid (but
a uniform grid does not imply a perfect model).

context functions that depend on the value of the previous PIT value:

wr(Ci,j) =

{
1 : Tr−1 ≤ φi−1,j < Tr
0

(C.5)

Where 1 ≤ r ≤ 4 and {T0 = 0, T1 = .25, T2 = .5, T3 = .75, T4 = 1}. Note that
defining the context function in terms of the previous PIT value introduces some tech-
nical complications when attempting to do the actual compression, but is completely
legitimate from a inferential standpoint. The PIT value histograms resulting from the
use of these context functions are shown in Figure C.4.

The histograms of Figure C.4 are then used to update the model ensemble generated
by the MRF. The result is a layered MRF+PITA model. The codelength achieved by
the new model is 2.8 · 106 bits, corresponding to a savings of about 400,000 bits.

After the update is applied, new versions of the PIT value image and the PIT value
grid are produced. These are shown in Figure C.2(b) and Figure C.3(b). The PIT value
image is clearly much more random as a result of the update, implying an improved
model. Of course, it is still not completely random - faint outlines of the shapes and
edges can be seen, implying that there is still room to improve the model. The problem
now is that it is difficult to write down simple context functions that will reveal the
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Figure C.4: PIT value histograms corresponding to four context functions that depend
on the value of the previous PIT value φi−1,j . The unevenness in these histograms
indicates that they can be used to improve the model ensembles.
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randomness deficiencies in the image. Also, the PIT value grid of Figure C.3(b) is
much more uniform.

C.4 Summary

The purpose of this Appendix was to illustrate an example of updating a complex
model using the PITA idea. In this example, an MRF model was trained using an
image as the data set. The trained model involved many parameters. Because the
MRF assigns a different observation probability to each pixel depending on the state
occupation probabilities, there is no way to visualize the fit of the model to the pixel
data. Furthermore, while the trained MRF was good compared to other MRF models,
it is difficult to know if the model is good in an absolute sense.

By visualizing the PIT values, and noting that the distribution was obviously non-
random, it was easy to see that the MRF model was in fact quite imperfect. By applying
a few simple PITA updates, an improved model was obtained. This MRF+PITA model
resulted in a savings of 4 · 105 bits compared to the previous one.

The point of the example is not specifically related to MRF image modeling. It
is not clear if the base MRF configuration used in the example is the “optimal” or
state of the art type, or if such a designation would even be meaningful. The situation
that arises when attempting to model an image with a trained MRF is a very typical
situation in statistical modeling. A complex model is trained on the complex data
set, and it achieves some log-likelihood. But there is no way to know if the model is
actually good.

The PITA idea is thus a “win-win” proposition. If the analysis of PIT values shows
that they are random, this provides evidence that the model is good. If randomness
deficiencies are found, this indicates a way to improve the model.
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